Log in

Mass Structured Systems with Boundary Delay: Oscillations and the Effect of Selective Predation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study equilibrium and oscillatory solutions of a general mass structured system with a boundary delay. Such delays may be derived from systems with a separate egg class. Analytical calculations reveal existence criteria for non-trivial steady states. We further explore parameter space using numerical methods. The analysis is applied to a typical mass structured slug population model revealing oscillations, pulse solutions and irregular dynamics. However, robustly defined isolated cohorts, of the form sometimes suggested by experimental data, do not naturally emerge. Nonetheless, disordered, leapfrogging local maxima do result and may be enhanced by selective predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abia, L.M., Angulo, O., López-Marcos, J.C.: Size-structured population dynamics models and their numerical solutions. Discrete Contin. Dyn. Syst., Ser. B 4, 1203–1222 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Abia, L.M., Angulo, O., López-Marcos, J.C.: Age-structured population models and their numerical solution. Ecol. Model. 188, 112–136 (2005)

    Article  Google Scholar 

  • Abia, L.M., Angulo, O., López-Marcos, J.C., López-Marcos, M.A.: Numerical schemes for a size-structured cell population model with equal fission. Math. Comput. Model. 50, 653–664 (2009)

    Article  MATH  Google Scholar 

  • Abia, L.M., Angulo, O., López-Marcos, J.C., López-Marcos, M.A.: Numerical study on the proliferation cells fraction of a tumour cord model. Math. Comput. Model. 52, 992–998 (2010a)

    Article  MATH  Google Scholar 

  • Abia, L.M., Angulo, O., López-Marcos, J.C., López-Marcos, M.A.: Long-time simulation of a size-structured population model with a dynamical resource. Math. Model. Nat. Phenom. 5, 1–21 (2010b)

    Article  MATH  Google Scholar 

  • Ackleh, A.S., Ito, K.: An implicit finite difference scheme for the nonlinear size-structured population model. Numer. Funct. Anal. Optim. 18, 865–884 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Adimy, M., Angulo, O., Crauste, F., López-Marcos, J.C.: Numerical integration of a mathematical model of hematopoietic stem cell dynamics. Comput. Math. Appl. 56, 594–606 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Angulo, O., López-Marcos, J.C.: Numerical schemes for size-structured population equations. Math. Biosci. 157, 169–188 (1999)

    Article  MathSciNet  Google Scholar 

  • Angulo, O., López-Marcos, J.C.: Numerical integration of nonlinear size-structured population equations. Ecol. Model. 133, 3–14 (2000)

    Article  Google Scholar 

  • Angulo, O., López-Marcos, J.C.: Numerical integration of autonomous and nonautonomous nonlinear size-structured population models. Math. Biosci. 177–178, 39–71 (2002)

    Article  Google Scholar 

  • Angulo, O., López-Marcos, J.C.: Numerical integration of fully nonlinear size-structured population models. Appl. Numer. Math. 50, 291–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Angulo, O., López-Marcos, J.C., López-Marcos, M.A., Martínez-Rodríguez, J.: Numerical analysis of an open marine population model with spaced-limited recruitment. Math. Comput. Model. 52, 1037–1044 (2010a)

    Article  MATH  Google Scholar 

  • Angulo, O., López-Marcos, J.C., López-Marcos, M.A., Milner, F.A.: A numerical method for nonlinear age-structured population models with finite maximum age. J. Math. Anal. Appl. 361, 150–160 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Angulo, O., López-Marcos, J.C., López-Marcos, M.A.: Numerical approximation of singular asymptotic states for a size-structured population model with a dynamical resource. Math. Comput. Model. 54, 1693–1698 (2011a)

    Article  MATH  Google Scholar 

  • Angulo, O., López-Marcos, J.C., López-Marcos, M.A., Martínez-Rodríguez, J.: Numerical investigation of the recruitment process in open marine population models. J. Stat. Mech. Theory Exp. (2011b). doi:10.1088/1742-5468/2011/01/P01003

    Google Scholar 

  • Angulo, O., López-Marcos, J.C., López-Marcos, M.A.: A semi-Lagrangian method for a cell population model in a dynamical environment. Math. Comput. Model. (2011c). doi:10.1016/j.mcm.2011.12.016.

    Google Scholar 

  • Bees, M.A., Angulo, O., López-Marcos, J.C., Schley, D.: Dynamics of a structured slug population model in the absence of seasonal variation. Math. Models Methods Appl. Sci. 12, 1961–1985 (2006)

    Article  Google Scholar 

  • Bohan, D.A., Bohan, A.C., Glen, D.M., Symondson, W.O.C., Wiltshire, C.W., Hughes, L.: Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 69, 1–14 (2000)

    Article  Google Scholar 

  • Calsina, A., Saldaña, J.: A model of physiologically structured population dynamics with a nonlinear individual growth rate. J. Math. Biol. 33, 335–364 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Carrick, R.: The life history and development of Agriolimax agrestis L. and the grey field slug. Trans. R. Soc. Edinb. 59, 563–597 (1938)

    Google Scholar 

  • Choi, Y.H., Bohan, D.A., Powers, S.J., Wiltshire, C.W., Glen, D.M., Semenov, M.A.: Modelling Deroceras reticulatum (Gastropoda) population dynamics based on daily temperature and rainfall. Agric. Ecosyst. Environ. 103, 519–525 (2004)

    Article  Google Scholar 

  • Choi, Y.H., Bohan, D.A., Potting, R.P.J., Semenov, M.A., Glen, D.M.: Individual based models of slug population and spatial dynamics. Ecol. Model. 190, 336–350 (2006)

    Article  Google Scholar 

  • de Roos, A.M.: A gentle introduction to physiologically structured population models. In: Tuljapurkar, S., Caswell, H. (eds.) Structured Population Models in Marine, Terrestrial and Freshwater Systems, pp. 199–204. Chapmann-Hall, New York (1997)

    Google Scholar 

  • Digweed, S.G.: Selection of terrestrial gastropod prey by Cychrine and Pterostichine ground beetles (Coleoptera: Carabidae). Can. Entomol. 125, 463–472 (1993)

    Article  Google Scholar 

  • Hunter, P.J., Symmonds, B.V.: The leapfrogging slug. Nature 229, 349 (1971)

    Article  Google Scholar 

  • Ito, K., Kappel, F., Peichl, G.: A fully discretized approximation scheme for size-structured population models. SIAM J. Numer. Anal. 28, 923–954 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Kostova, T.V., Chipev, N.H.: A model of the dynamics of intramolluscan trematode populations: some problems concerning oscillatory behavior. Comput. Math. Appl. 21, 1–15 (1991)

    Article  MATH  Google Scholar 

  • Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  • Murphy, L.F.: A nonlinear growth mechanism in size structured population dynamics. J. Theor. Biol. 104, 493–506 (1983)

    Article  Google Scholar 

  • Pollett, M., Desender, K.: Adult and larval feeding ecology in Pterostichus melanarius Ill. (Coleoptera, Carabidae). Meded. Fac. Landbouwwet. Rijksuniv. Gent 50, 581–594 (1986)

    Google Scholar 

  • Purvis, G., Bannon, J.W.: Non-target effects of repeated methiocarb slug pellet application on carabid beetle (Coleoptera: Carabidae) activity in winter-sown cereals. Ann. Appl. Ecol. 121, 401–422 (1992)

    Article  Google Scholar 

  • Rae, R., Verdun, C., Grewal, P.S., Robertson, J.F., Wilson, M.J.: Review: biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita—progress and prospects. Pest Manag. Sci. 63, 1153–1164 (2007)

    Article  Google Scholar 

  • Schley, D., Bees, M.A.: Discrete slug population model determined by egg production. J. Biol. Syst. 10, 243–264 (2002)

    Article  MATH  Google Scholar 

  • Schley, D., Bees, M.A.: Delay dynamics of the slug Deroceras reticulatum, an agricultural pest. Ecol. Model. 162, 177–198 (2003)

    Article  Google Scholar 

  • Schley, D., Bees, M.A.: The role of time delays in a non-autonomous host-parasitoid model of slug biocontrol with nematodes. Ecol. Model. 193, 543–559 (2006)

    Article  Google Scholar 

  • Shirley, M.D.F., Rushton, S.P., Young, A.G., Port, G.R.: Simulating the long-term dynamics of slug populations: a process-based modelling approach for pest control. J. Appl. Ecol. 38, 401–411 (2001)

    Article  Google Scholar 

  • South, A.: A comparison of the life cycles of Deroceras Reticulatum (Müller) and Srion intermedius normand (pulmonata: stylommatophora) at different temperatures under laboratory conditions. J. Molluscan Stud. 48, 233–244 (1982)

    Google Scholar 

  • South, A.: A comparison of the life cycles of the slugs Deroceras Reticulatum (Müller) and Arion Intermedius Normand on permanent pasture. J. Molluscan Stud. 55, 9–22 (1989)

    Article  Google Scholar 

  • South, A.: Terrestrial Slugs. Chapman & Hall, London (1992)

    Book  Google Scholar 

  • Symondson, W.O.C., Glen, D.M., Ives, A.R., Langdon, C.J., Wiltshire, C.W.: Dynamics of the relationship between a generalist predator and slugs over five years. Ecology 83, 137–147 (2002)

    Article  Google Scholar 

  • Tucker, S.L., Zimmerman, S.O.: A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48, 549–591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, M.J., Glen, D.M., Hamacher, G.M., Smith, J.U.: A model to optimise biological control of slugs using nematode parasites. Appl. Soil Ecol. 26, 179–191 (2004)

    Article  Google Scholar 

  • Zavala, M.A., Angulo, O., Bravo de la Parra, R., López-Marcos, J.C.: A model of stand structure and dynamics for ramet and monospecific tree populations: linking pattern to process. J. Theor. Biol. 244, 440–450 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to both anonymous referees for their valuable help to improve the manuscript. The authors would like to thank D. Schley for useful discussions. O.A. and J.C.L. are supported in part by the grants from the Ministerio de Ciencia e Innovación (Spain), MTM2011-25238, the Junta de Castilla y León and Unión Europea F.S.E. VA046A07, and by the 2009 Grant Program for Excellence Research Group (GR137) of the Junta de Castilla y León. M.A.B. is supported by EPSRC EP/D073308/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Angulo.

Additional information

Communicated by Philip K. Maini.

Appendices

Appendix A: Hopf Bifurcation

Following on from Eq. (43), for a Hopf bifurcation, we put γ=iα, where α∈ℝ. For convenience, set

$$ h(x) = \int^{x}_{x_h}\frac{1}{g(\sigma)}\,\mathrm{d} \sigma , $$
(46)

so that G(x)=exp(h(x)). Then

$$ G^{\gamma}(x)=G^{\mathrm{i}\alpha}(x)=\cos\bigl(\alpha h(x)\bigr)+\mathrm{i}\sin \bigl(\alpha h(x)\bigr), $$
(47)

and

(48)

where we define

$$ K\bigl(x,M^*\bigr) = 1/\mu_M\bigl(x,M^*\bigr) $$
(49)

for notational convenience (see definition of carrying capacity in Sect. 3). Also we find that

(50)

Then, defining

(51)
(52)

and noting the definition of M , we obtain

(53)
(54)

Hence,

(55)

where a 11=[CK(x,M )α+SM ]/A and a 12=[SK(x,M )α+S 2+C 2CM ]/A, where A=(K(x,M )α+S)2+(CM )2.

Finally, we obtain the two equations

(56)

that must be satisfied for the two unknowns α and the control parameter (yet to be given).

The starred quantities are known from calculation of the non-trivial equilibrium solution, and C and S are functions of α as defined in Eqs. (51) and (52), respectively. The function β(x) is the birth kernel, m(x) is the kernel for M, K(x,M ) is a function from the death rate defined in Eq. (49), and h(x) is related to the known growth function, g(x), as in Eq. (46).

With the definitions in Sect. 3, a computation reveals that K(x,M ) now simply equals the constant K 0, and h(x) is computed from Eq. (46) to be \(h(x)=g_{2} (\frac{1}{x_{m}-x}-\frac{1}{x_{m}-x_{h}} )\).

Appendix B: Numerical Scheme

The simulation of the model equations is made with a numerical method that integrates the equations along characteristic curves and uses a representation formula of the solution. See Bees et al. (2006) for full details. The method was further adapted to the new system with a boundary delay, which represents the egg stage, and employs a moving grid method with node selection as developed in Angulo and López-Marcos (2004). We briefly document the method here for completeness. For each time, the grid nodes and the approximations to the solution at these points are calculated by means of a characteristics method, except for slugs of minimum size, which are obtained by means of the boundary condition. The formula we use in the numerical method is based upon a theoretical integration along characteristics, which provides the next representation of the solution to problem (19). Hence,

$$ s\bigl(t,x(t;t_*,x_*)\bigr)=s(t_{*},x_{*}) \exp \biggl(-\int^{t}_{t_*} \mu^*\bigl(x( \tau;t_{*},x_{*}),M(\tau),\varPi(\tau)\bigr)\,\mathrm{d}\tau \biggr), $$
(57)

where μ (x,M(t),Π(t))=μ(x,M(t),Π(t))+g′(x), and x(t;t ,x ) is the solution of

$$ \left \{ \begin{array}{l} \dfrac{d x}{d t}=g\bigl(x(t)\bigr), \\[7pt] x(t_*)=x_*. \end{array} \right . $$
(58)

Given positive integers R and J with a fixed time interval [0,T], we define Δt=a h /R, Δx=(x m x h )/J and N=[Tt], with N+1 discrete time levels t n =nΔt, 0≤nN. The initial grid nodes are chosen as \(X_{j}^{0}=x_{h} + jh\), 0≤jR, with the numerical initial condition (equal to the theoretical initial condition at each node) \(U_{j}^{0} = s(X^{0}_{j},0), 0\leq j \leq J\). The initial condition for a delay problem requires a value of the solution for [−a h ,0]. However, the delay appears only at the boundary, so we store eggs laid for each time t, by introducing \(L_{n} = \frac{x_{h}}{a_{h}} l(0, t_{n} )\), where l(0,t n ) represents the eggs laid at t=t n , −Rn≤0. For the general time step, t n+1, 0≤nN−1, we assume that the solution approximations and grid at the previous time level t n are known. Then, defining

(59)
(60)
(61)
(62)

we compute

$$ U^{n+1}_0=\frac{L^{n-R+1}_0 \exp(-a_h \mu_0)}{g(x_h)},\quad\mbox{and}\quad L^{n+1}_0 = Q \bigl( \mathbf{X}^{n+1},\boldsymbol{\beta}^{n+1} \mathbf{U}^{{n+1}} \bigr). $$
(63)

Here, \(\beta_{j}^{n}=\beta(X^{n}_{j})\), 0≤jJ+1, \((\gamma_{s})_{j}^{n}=\gamma_{s}(X^{n}_{j})\), 0≤jJ+1, s=M,Π; and \(Q(\mathbf{ X}^{l},\mathbf{ V}^{l})= \sum_{j=0}^{J+l}q^{l}_{j}(\mathbf{X}^{l})V^{l}_{j}\), l=0,1, where \(q^{l}_{j}(\mathbf{ X}^{l})\), 0≤jJ+l, l=0,1, are the coefficients of the composite trapezoidal quadrature rules with nodes in X l. Also, \(\boldsymbol{\gamma}^{n}_{s}\mathbf{U}^{n}\), s=M,Π; and β n U n, represent the component-wise product of the corresponding vectors, 0≤nN. Note that the functions γ s , s=M,Π, are the kernels of the integrals in the definitions of functions M and Π.

The number of nodes might vary at consecutive time levels as new nodes are introduced to the scheme that flux through node x h . Therefore, the first grid node \(X^{n+1}_{l}\) that satisfies

$$ \bigl|X^{n+1}_{R+l+1}-X^{n+1}_{R+l-1}\bigr|= \min_{1 \leq j \leq J}\bigl|X^{n+1}_{R+j+1}-X^{n+1}_{R+j-1}\bigr|, $$
(64)

is removed, maintaining a constant number of nodes for each time level involved in the implementation of the step scheme ((J+2) and (J+1) for the current and previous levels, respectively). However, we do not recompute the approximations to the nonlocal terms at such time levels. The grid (subgrid of the complete system, in which all the nodes take part) is composed of x h , the minimum size of slugs, together with the nodes obtained by integration along characteristics from the nodes selected at the previous time level. The solutions are defined by an implicit system of equations given by (61), which are solved via an iterative procedure. (This scheme can be easily extended to treat problems where the slug growth function depends additionally on a weighted sum of the population.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angulo, O., López-Marcos, J.C. & Bees, M.A. Mass Structured Systems with Boundary Delay: Oscillations and the Effect of Selective Predation. J Nonlinear Sci 22, 961–984 (2012). https://doi.org/10.1007/s00332-012-9133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9133-6

Keywords

Mathematics Subject Classification

Navigation