Log in

Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic habitats harbour yet unexplored niches for microbial communities. Among these, lichen symbioses are very long-living and stable microenvironments for bacterial colonization. In this work, we present a first assessment of the culturable fraction of bacteria associated with Antarctic lichens. A phylogenetic analysis based on 16S rRNA gene sequence of 30 bacterial strains isolated from five epilithic lichens belonging to four species (Lecanora fuscobrunnea, Umbilicaria decussata, Usnea antarctica, Xanthoria elegans) shows that these represent the main bacterial lineages Actinobacteria, Firmicutes, Proteobacteria and Deinococcus-Thermus. Within the Actinomycetales, two strains group in the genera Arthrobacter and Knoellia, respectively. Most of the other Actinobacteria form well-supported groups, but could be assigned with certainty only at the family level, and one is in isolated position in the Mycobacteriaceae. The strains in Firmicutes and Proteobacteria belong to the genera Paenibacillus, Bacillus and Pseudomonas, which were already reported from lichen thalli. Some genera such as Burkholderia and Azotobacter, reported in the literature as also associated with lichens, have not been detected in this study. One strain represents the first record of Deinococcus in epilithic lichens; it is related to the species Deinococcus alpinitundrae from Alpine environments and may represent a new species. Further separated and well-supported clades indicate the presence of possibly new entities. Some of the examined strains are related to known psychrophilic bacteria isolated from ice and other extreme environments, others with bacteria distributed worldwide even in temperate climates. Most of the strains tested were able to grow at low temperatures, but tolerated a wider range of temperature. Ecological and evolutionary implications of these lichen-associated bacteria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmadjian V (1995) Lichens are more important than you think. BioScience 45:123–124

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35

    Article  CAS  PubMed  Google Scholar 

  • Battista JR, Earl AM, Park MJ (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    Article  CAS  PubMed  Google Scholar 

  • Boustie J, Grube M (2005) Lichens-a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287

    Article  CAS  Google Scholar 

  • Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, de Castro JV Jr, ller HM, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  Google Scholar 

  • Caton TM, Witte LR, Nguyen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462

    Article  CAS  PubMed  Google Scholar 

  • Christner BC (2002) Recovery of bacteria from glacial and subglacial environments. Thesis, Department of Microbiology, Byrd Polar Research Center, Ohio State University

  • Davies J, Wang H, Taylor T, Warabi K, Huang X-H, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 215:3858–3867

    Article  CAS  Google Scholar 

  • Delorme S, Lemanceau P, Christen R, Corberand T, Meyer JM, Gardan L (2002) Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523

    CAS  PubMed  Google Scholar 

  • De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190

    Article  PubMed  Google Scholar 

  • Elo S, Suominen I, Kampfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K (2001) Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791

    Article  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI (1982) Endolithic microrganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • García de Castro A, Bredholt H, Strøm AR, Tunnacliffe A (2000) Anhydrobiotic engineering of gram-negative bacteria. Appl Environ Microbiol 66(9):4142–4144

    Article  PubMed  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415

    Article  CAS  Google Scholar 

  • Grube M, Cardinale M, Vieira de Castro J, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J. doi:10.1038/ismej.2009.63

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria. Occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    CAS  PubMed  Google Scholar 

  • Henkel PA, Plotnikova TT (1973) Nitrogen-fixing bacteria in lichens. Izv Akad Nauk SSSR Ser Biol 1973:807–813

    Google Scholar 

  • Henkel PA, Yuzhakova LA (1936) Nitrogen-fixing bacteria in lichens. Izv Biol Inst Permsk Gos Univ 10:9–10

    Google Scholar 

  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    Article  CAS  PubMed  Google Scholar 

  • Jobb GA, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490

    Google Scholar 

  • Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593

    Article  Google Scholar 

  • Lee SD, Park SK, Yun YW, Lee DW (2008) Saxeibacter lacteus gen. nov., sp. nov., an actinobacterium isolated from rock. Int J Syst Evol Microbiol 58:906–909

    Article  PubMed  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    Article  CAS  PubMed  Google Scholar 

  • Loveland-Curtze J, Sheridan PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171:355–363

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Mannisto MK, Schumann P, Rainey FA, Kampfer P, Tsitko I, Tiirola MA, Salkinoja-Salonen MS (2000) Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50:1731–1739

    CAS  PubMed  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    CAS  PubMed  Google Scholar 

  • McKay CP, Friedmann I (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, de Hoog GS, de los Rios A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Netherlands, pp 735–757

    Chapter  Google Scholar 

  • Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Studies in polar research, Cambridge University Press, Cambridge

    Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peix A, Rivas R, Santa-Regina I, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C, Velazquez E (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850

    Article  CAS  PubMed  Google Scholar 

  • Pirozynsky AH, Malloch DW (1975) The origin of land plants. A matter of mycotrophism. Biosystems 6:153–154

    Article  Google Scholar 

  • Reeb V, Lutzoni F, Rouxb C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  CAS  PubMed  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32

    Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643

    Article  PubMed  Google Scholar 

  • Shravage BV, Dayananda KM, Patole MS, Shouche YS (2007) Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol Res 162:15–25

    Article  CAS  PubMed  Google Scholar 

  • Siebert J, Hirsch P (1988) Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol 9:37–44

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wang Y, Ogawa M, Fukuda K, Miyamoto H, Taniguchi H (2006) Isolation and identification of mycobacteria from soils at an illegal dum** site and landfills in Japan. Microbiol Immunol 50:513–524

    CAS  PubMed  Google Scholar 

  • Warmink JR, Nazir R, van Elsas JD (2008) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, **ao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank PNRA (Italian National Program for Antarctic Research) for supporting sample collection and Italian National Antarctic Museum “Felice Ippolito” for supporting CCFEE (Culture Collection of Fungi From Extreme Environments).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Zucconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selbmann, L., Zucconi, L., Ruisi, S. et al. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33, 71–83 (2010). https://doi.org/10.1007/s00300-009-0686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0686-2

Keywords

Navigation