Log in

Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of SoSnRK2.1 improved drought tolerance and growth of tobacco plants.

Abstract

Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. In this research, SoSnRK2.1 gene was cloned from sugarcane variety GT21 and characterized under various stresses. The cloned SoSnRK2.1 gene has a complete open reading frame of 1002 bp, encoding a peptide of 333 amino acids. The amino acid sequence of SoSnRK2.1 has high homology with those of Zea mays and Oryza sativa, which belongs to SnRK2 s families. The expression of SoSnRK2.1 under stresses of drought, PEG, and ABA indicated that this gene is involved in stress responses in sugarcane. To investigate the gene function, fusional SoSnRK2.1-GFP-pBI121 under control of CaMV 35S was transformed into tobacco plants. Growth and morphology of transgenic plants demonstrated that overexpression of SoSnRK2.1 enhanced drought tolerance in tobacco. Transgenic tobacco plants had lower levels of ion leakage (IL), and contents of maleic dialdehyde (MDA) and H2O2, with higher activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and chlorophyll and relative water content (RWC) than those in wide type (WT) tobacco. SoSnRK2.1 was stably transmitted to the next generation via sexual reproduction. Though the data presented here are from a heterologous system, it is highly likely that SoSnRK2.1 is involved in the abiotic stress response in sugarcane and may be playing an important role in regulation of its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AA:

Amino acid

AMPK:

AMP-activated protein kinase

At:

Arabibopsis thaliana

AT:

Antisense transgenic

Bd:

Brachypodium distachyon

CAT:

Catalase

cDNA:

Complementary DNA

CDPK:

Calcium-dependent protein kinase

CTAB:

Cetyl trimethyl ammonium bromide

DIG:

Digoxigenin

DW:

Dry weight

FW:

Fresh weight

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Gm:

Glycine max

IL:

Ion leakage

MDA:

Maleic dialdehyde

Nt:

Nicitiaba tabacum

Os:

Oryza sativa

pI:

Isoelectric point

POD:

Peroxidase

PP2C:

2C protein phosphatase

PYL:

Pyrabatin resistance 1-like

PYR:

Pyrabatin resistance

RACE:

Rapid amplification of cDNA ends

RCAR:

Regulatory component of ABA receptors

ROS:

Reactive oxygen species

RWC:

Relative water content

Sb:

Sorghum bicolor

Ser/Thr:

Serine/threonine protein kinase

SNF1:

Sucrose non-fermenting 1

SnRK2:

Sucrose non-fermenting1-related protein kinase 2

So:

Saccharum officinarum

SOD:

Superoxide dismutase

SOS2:

Salt over sensitive 2

ST:

Sense transgenic

TBA:

Thiobarbituric acid

TW:

Turgid weight

Vv:

Vitis vinifera

WT:

Wild type

Zm:

Zea mays

References

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Au J Biol Sci 15:413–428

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudsocq M, Barbier-Brygoo HB, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279(40):41758–41766

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Droillard MJ, Barbier-Brygoo H, Laurière C (2006) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63(4):491–503

    Article  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2003) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  PubMed  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6(3):325–330

    Article  CAS  PubMed  Google Scholar 

  • Coello P, Hey S, Halford N (2010) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: Potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62(3):883–893

    Article  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. AnnuRev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Deng L, Liu H, Yang WN (2008) Construction of the recombinant expression plasmid pBI121-GFP-62390 and pBI121-GFP-51780 containing green fluorescent protein gene. J Anhui Agric Sci 36(26):11260–11262

    Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32(1):79–92

    Article  CAS  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  CAS  PubMed  Google Scholar 

  • Halford N, Hey S (2009) SNF1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419(2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann Rev Biochem 67(1):821–855

    Article  CAS  PubMed  Google Scholar 

  • Harmon AC (2003) Calcium-regulated protein kinases of plants. Gravitat Space Biol Bull 16(2):83–90

    Google Scholar 

  • Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochem 33(23):7278–7287

    Article  CAS  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33(23):7267–7277

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hong S (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt and cold treatments in Arabidopsis thaliana. Plant Physiol 113(4):1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SC, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Qian W, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, **ao B, Li X, Zhang Q, **ong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Aca Sci USA 103:12987–12992

    Article  CAS  Google Scholar 

  • Huai J, Wang M, He J, Zheng J, Dong Z, Lü H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27(12):1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10(1):230

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 Function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12(9):1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel AC, Riadh K, Gopi R, Manicannan P, Ines J, Al-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436

    Article  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Kim CY, Xuan Vo KT, An G, Jeon JS (2015) A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. J Korean Soc Appl Biol Chem 58(5):669–675

    Article  CAS  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16(5):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Ann Rev Plant Physiol Plant Mol Biol 42(1):313–349

    Article  CAS  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu SK (2010) The SnRK protein kinase family and the function of SnRK2 protein kinase. Mol Plant Breed 8(3):547–555

    CAS  Google Scholar 

  • Li YR, Yang LT (2015) Sugarcane agriculture and sugar industry in China. Sugar Tech 17(1):1–8

    Article  Google Scholar 

  • Li J, Want X, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287(5451):300–303

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Aca Sci USA 97(7):3730–3734

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Method 25(4):402–408

    Article  CAS  Google Scholar 

  • Mao X, Zhang H, Tian S, Chang X, **g R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61(3):683–696

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–457

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trend Plant Sci 9(10):490–498

    Article  CAS  Google Scholar 

  • Miyazono KI, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi YH, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signaling. Nature 462:609–614

    Article  CAS  PubMed  Google Scholar 

  • Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning J, Li X, Hicks LM, **ong L (2009) A Raf-Like MAPKKK Gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152(2):876–890

    Article  PubMed  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326(5958):1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Zhang M, Kong X, **ng X, Liu Y, Zhou Y, Liu Y, Sun L, Li D (2011) ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 235(4):661–676

    Article  PubMed  Google Scholar 

  • Pang XB, Mao XG, **g RL, Shi JF, Gao T, Chang XP, Li YF (2007) Analysis of gene expression profile responses to water stress in wheat (Triticum aestivum L.) seedlings. Acta Agron Sinica 33:333–336

    CAS  Google Scholar 

  • Park YS, Hong SW, Oh SA, Kwak JM, Lee HH, Nam HG (1993) Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains. Plant Mol Biol 22(4):615–624

    Article  CAS  PubMed  Google Scholar 

  • Podell S, Gribskov M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genom 5:37

    Article  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126(1):445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polle A, Chakrabarti K (1994) Effects of manganese deficiency on soluble apoplastic peroxidase activities and lignin content in needles of Norway spruce (Picea abies). Tree Physiol 14(10):1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99(12):8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trend Plant Sci 15(7):395–401

    Article  CAS  Google Scholar 

  • Rogers S, Bendich A (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5(2):69–76

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5(11):e13935

    Article  PubMed  PubMed Central  Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He YZ, Xu Y, Chalmers MJ, Brunzelle JS, Zhang HM, Yang HY, Jiang HL, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335(6064):85–88

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus U, Pathre M (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan QL, Li CN, Yang LT, Li YR (2013) Cloning and expression analysis of abcisic acid signal transduction key enzyme gene SoSnRK2.1 from sugarcane. Acta Agron Sin 39(12):2162–2170

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62(7):2349–2361

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106(41):17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2014) Beating the heat. Nat Biotechnol 32:610–613

    Article  CAS  PubMed  Google Scholar 

  • **ong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43(12):1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang H, Mao X, Wang C, **g R (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5(12):e16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153:99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present study was supported by the grants from the National High Technology Research and Development Program (“863” Program) of China (2013AA102604), Natural Science Foundation of China (31360293), International Scientific Cooperation Program of China (2013DFA31600), Guangxi Special Funds for Bagui Scholars and Distinguished Experts (2013), and Guangxi Natural Science Fund (2011GXNSFF018002, 2012GXNSFDA053011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Tao Yang or Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical statement

The manuscript entitled ‘‘Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco’’ has not been submitted to more than one journal for simultaneous consideration. Authors declare that this manuscript has not been published previously (partly or in full). The results of this study have not been split up into several parts. Authors also declare that data have not been fabricated or manipulated (including images) to support our conclusions. Data, text, or theories by others are not presented unless they are the author’s own. All authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Additional information

Communicated by P. Lakshmanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, TT., Sun, B., Niu, JQ. et al. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep 35, 1891–1905 (2016). https://doi.org/10.1007/s00299-016-2004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2004-0

Keywords

Navigation