Log in

Characterization of NtREL1, a novel root-specific gene from tobacco, and upstream promoter activity analysis in homologous and heterologous hosts

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A novel root-specific gene and its upstream promoter were cloned and characterized for potential application in root-specific expression of transgenes.

Abstract

The root is an important plant organ subjected to many biotic and abiotic stresses, such as infection by Ralstonia solanacearum. To isolate tobacco root-specific promoters for genetic applications, microarray screening was performed to identify genes highly and specifically expressed in the root. One root-specific gene encoding an extensin-like protein (NtREL1) was isolated, and its expression pattern was further characterized by both microarray analysis and reverse transcription-polymerase chain reaction. NtREL1 was highly expressed only in roots but not in any other organ. NtREL1 expression was affected by hormone treatment (salicylic acid, abscisic acid, and ethephon) as well as low temperature, drought, and R. solanacearum infection. A full-length 849 bp cDNA containing a 657-nucleotide open reading frame was cloned by Rapid Amplification of cDNA Ends. Subsequently, a fragment of 1,574 bp upstream of NtREL1 was isolated by flanking PCR and named pNtREL1. This promoter fragment contains TATA, GATA, and CAAT-boxes, the basic elements of a promoter, and six root-specific expression elements, namely OSE1, OSE2, ROOTMOTIFTAPOX1, SURECOREATSULTR11, P1BS, and WUSATAg. A construct containing the bacterial uidA reporter gene (β-glucuronidase, GUS) driven by the pNtREL1 promoter was transformed into tobacco plants. GUS staining was only detected in the root, but not in leaves and stems. Additionally, transgenic tobacco plants containing peanut resveratrol synthase gene (AhRS) driven by the pNtREL1 promoter produced resveratrol only in the root. Thus, the pNtREL1 promoter can be used to direct root-specific expression of target genes to protect the root from stress or for biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

ABA:

Abscisic acid

ETH:

Ethephon

RT-PCR:

Reverse transcript polymerase chain reaction

CTAB:

Cetyltrimethyl ammonium bromide

BLAST:

Basic local alignment search tool

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

UTR:

Untranslated regions

UV:

Ultra-violet

CaMV:

Cauli flower mosaic virus

GUS:

β-Glucuronidase

RS:

Resveratrol synthase

HPLC:

High-performance liquid chromatography

References

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Varner JE (1985) An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBOJ 4:2145

    CAS  Google Scholar 

  • Chen H, Zhang C, Deng Y et al (2015) Identification of low Ca2+ stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL). Plant Biotechnol J. doi:10.1111/pbi.12415

    Google Scholar 

  • Coelho GTCP, Carneiro NP, Karthikeyan AS et al (2010) A phosphate transporter promoter from Arabidopsis thaliana AtPHT1; 4 gene drives preferential gene expression in transgenic maize roots under phosphorus starvation. Plant Mol Biol Rep 28:717–723

    Article  CAS  Google Scholar 

  • Conkling MA, Cheng C, Yamamoto YT, Goodman HM (1990) Isolation of transcriptionally regulated root-specific genes from tobacco. Plant Physiol 93:1203–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin DR, Sauer N, Lamb CJ (1987) Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol Cell Biol 7:4337–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rold promoter, domain a of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • Evans IM, Gatehouse LN, Gatehouse JA et al (1990) The extensin gene family in oilseed rape (Brassica napus L.): characterisation of sequences of representative members of the family. Mol Gen Genet 223:273–287

    CAS  PubMed  Google Scholar 

  • Fehlberg V, Vieweg MF, Dohmann EMN et al (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806

    Article  CAS  PubMed  Google Scholar 

  • Fei H, Chaillou S, Hirel B et al (2003) Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216:467–474

    CAS  PubMed  Google Scholar 

  • Filip V, Plockova M, Šmidrkal J et al (2003) Resveratrol and its antioxidant and antimicrobial effectiveness. Food Chem 83:585–593

    Article  CAS  Google Scholar 

  • Grace ML, Chandrasekharan MB, Hall TC, Crowe AJ (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J Biol Chem 279:8102–8110

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Chen Y, Ye N et al (2014) Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family. BMC Genom 15:612

    Article  Google Scholar 

  • Halls C, Yu O (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 26:77–81

    Article  CAS  PubMed  Google Scholar 

  • Hertig C, Rebmann G, Bull J et al (1991) Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.). Plant Mol Biol 16:171–174

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Berta G, Doussan C et al (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1990) Characterization of a proline-rich cell wall protein gene family of soybean. A comparative analysis. J Biol Chem 265:2470–2475

    CAS  PubMed  Google Scholar 

  • İlhami G (2010) Antioxidant properties of resveratrol: a structure-activity insight. Innov Food Sci Emerg 11:210–218

    Article  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F et al (2003a) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F et al (2003b) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bio Stat 4:249–264

    Google Scholar 

  • Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya N, Nagasaki H, Morikami A et al (2003) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441

    Article  CAS  PubMed  Google Scholar 

  • Kamo KK (2003) Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep 21:797–803

    CAS  PubMed  Google Scholar 

  • Keller B, Lamb CJ (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev 3:1639–1646

    Article  CAS  PubMed  Google Scholar 

  • Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Ono T, Shimizu M et al (2005) Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. J Biosci Bioeng 99:38–42

    Article  CAS  PubMed  Google Scholar 

  • Lee J-K, Moon K-Y, Jiang Y, Hurwitz J (2001) The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. P Natl Acad Sci USA 98:13589–13594

    Article  CAS  Google Scholar 

  • Leelatanawit R, Uawisetwathana U, Klinbunga S, Karoonuthaisiri N (2011) A cDNA microarray, UniShrimpChip, for identification of genes relevant to testicular development in the black tiger shrimp (Penaeus monodon). BMC Mol Biol 12:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM (2003) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52:103–120

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and map** of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell Environ 28:67–77

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A et al (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J42:305–314

    Article  Google Scholar 

  • Memelink J, Hoge JHC, Schilperoort RA (1987) Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J 6:3579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noh SA, Lee H-S, Huh EJ et al (2010) SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot 61:1337–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh SA, Lee H-S, Huh GH et al (2012) A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 21:265–278

    Article  CAS  PubMed  Google Scholar 

  • Pan L-P, Yu S-L, Chen C-J et al (2012) Cloning a peanut resveratrol synthase gene and its expression in purple sweet potato. Plant Cell Rep 31:121–131

    Article  CAS  PubMed  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrrder G, Brown JWS, Schrrder J (1988) Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem 172:161–169

    Article  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the barley Pht1; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A et al (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agr Food Chem 55:7002–7009

    Article  CAS  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215:326–331

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Zhou J, Rumeau D et al (1991) Tomato extensin and extensin-like cDNAs: structure and expression in response to wounding. Plant Mol Biol 16:547–565

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Butt AD, Kim S (1992) Molecular details of tomato extensin and glycine-rich protein gene expression. Plant Mol Biol 19:205–215

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J et al (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513. doi:10.1104/pp.110.156554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stougaard J, Jørgensen J-E, Christensen T et al (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters. Mol Gen Genet 220:353–360

    Article  CAS  PubMed  Google Scholar 

  • Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria × ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910

    Article  CAS  PubMed  Google Scholar 

  • Vera P, Lamb C, Doerner PW (1994) Cell-cycle regulation of hydroxyproline-rich glycoprotein HRGPnt3 gene expression during the initiation of lateral root meristems. Plant J 6:717–727

    Article  CAS  Google Scholar 

  • Vijaybhaskar V, Subbiah V, Kaur J et al (2008) Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 33:185–193

    Article  CAS  PubMed  Google Scholar 

  • Wyatt RE, Nagao RT, Key JL (1992) Patterns of soybean proline-rich protein gene expression. Plant Cell 4:99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Buchholz WG, DeRose RT, Hall TC (1995) Characterization of a rice gene family encoding root-specific proteins. Plant Mol Biol 27:237–248

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Guo S, Chen K et al (2010) A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett 32:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GN et al (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z-H, Varner JE (1991) Tissue-specific expression of cell wall proteins in develo** soybean tissues. Plant Cell 3:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ronglong Pan (National Tsing Hua University, Taiwan) for a critical reading and revision of the article. This work was funded by Fujian Provincial Tobacco Corporation (Grant No.: 2008-191, Grant No.: 2012-042 and Grant No.: 2015-176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunhui Chen or Weijian Zhuang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Z.-Y. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Pan, S., Chen, H. et al. Characterization of NtREL1, a novel root-specific gene from tobacco, and upstream promoter activity analysis in homologous and heterologous hosts. Plant Cell Rep 35, 757–769 (2016). https://doi.org/10.1007/s00299-015-1918-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1918-2

Keywords

Navigation