Log in

Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The major insight in this manuscript is that we identified a new flowering regulator, GmSOC1-like, which may participate in the initiation and maintenance of flowering in soybean.

Abstract

Flowering is pivotal for the reproductive behavior of plants, and it is regulated by complex and coordinated genetic networks that are fine-tuned by endogenous cues and environmental signals. To better understand the molecular basis of flowering regulation in soybean, we isolated GmSOC1 and GmSOC1-like, two putative soybean orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE 20 (SOC1/AGL20). The expression pattern of GmSOC1-like was analyzed by qRT-PCR in Zigongdongdou, a photoperiod-sensitive soybean cultivar. GmSOC1-like was widely expressed at different levels in most organs of the soybean, with the highest expression in the shoot apex during the early stage of floral transition. In addition, its expression showed a circadian rhythm pattern, with the highest expression at midnight under short-day (SD) condition. Intriguingly, GmSOC1-like was induced 4 days earlier than GmSOC1 during flowering transition in SD, suggesting that GmSOC1 and GmSOC1-like expression might be differentially regulated. However, under long-day (LD) condition, the expression of GmSOC1 and GmSOC1-like decreased gradually in the shoot apex of Zigongdongdou, which is in accordance with the fact that Zigongdongdou maintains vegetative growth in LD. In addition, overexpression of GmSOC1-like stimulated the flowering of Lotus corniculatus cv. supperroot plants. In conclusion, the results of this study indicate that GmSOC1-like may act as a flowering inducer in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe J, Xu D, Miyano A et al (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci 43:1300–1304

    Article  Google Scholar 

  • Akashi R, Kawano T, Hashiguchi M et al (2003) Super roots in Lotus corniculatus: a unique tissue culture and regeneration system in a legume species. Plant Soil 255:27–33

    Article  CAS  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S et al (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J et al (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106

    Article  PubMed  Google Scholar 

  • Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci USA 98:7025–7028

    Article  PubMed  CAS  Google Scholar 

  • Bernard RL (1971) Two major genes for time of flowering and maturity in soybeans. Crop Sci 11:242–244

    Article  Google Scholar 

  • Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171

    Article  PubMed  CAS  Google Scholar 

  • Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232

    Article  Google Scholar 

  • Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13:703–707

    Google Scholar 

  • Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long day length. Soybean Genet Newsl 7:26–29

    Google Scholar 

  • Cerdán PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    Article  PubMed  Google Scholar 

  • Chi Y, Huang F, Liu H et al (2011) An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168:2251–2259

    Article  PubMed  CAS  Google Scholar 

  • Choi K, Kim J, Hwang HJ et al (2011) The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23:289–303

    Article  PubMed  CAS  Google Scholar 

  • Cober ER, Morrison MJ (2010) Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet 120:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996a) Genetic control of photoperiod response in early maturing near-isogenic soybean lines. Crop Sci 36:601–605

    Article  Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996b) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36:606–610

    Article  Google Scholar 

  • Cober ER, Molnar SJ, Charette M et al (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Article  Google Scholar 

  • Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Zhu X, Kauffman M et al (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Ying H, Helliwell CA et al (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA 108:6680–6685

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Busscher J, Franken J et al (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaflike characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed  CAS  Google Scholar 

  • Gregis V, Sessa A, Dorca-Fornell C et al (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 60:626–637

    Article  PubMed  CAS  Google Scholar 

  • Han T, Wang J (1995) Studies on the post-flowering photoperiodic responses in soybean. Acta Bot Sin 37:863–869

    Google Scholar 

  • Han T, Gai J, Wang J et al (1998) Discovery of flowering reversions in soybean plant. Acta Agron Sinica 24:168–171

    Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D et al (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    Article  PubMed  CAS  Google Scholar 

  • Immink RGH, Angenent GC (2002) Transcription factors do it together: the hows and whys of studying protein–protein interactions. Trends Plant Sci 7:531–534

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Marchal V, Panigrahi KCS et al (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2:247–256

    Article  PubMed  CAS  Google Scholar 

  • Jian B, Hou W, Wu C et al (2009) Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78

    Article  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Liu B, **a Z et al (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E et al (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim J, Han JJ et al (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Oh M, Park H et al (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu C, Ma Q et al (2005) Morphology and anatomy of the differentiation of flower bud and the process of flowering reversion in soybean cv. Zigongdongdou. Acta Agron Sin 31:1437–1442

    Google Scholar 

  • Li HJ, Xue Y, Jia DJ et al (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Chen H, Er HL et al (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • McBlain BA, Bernard RL, Cremeens CR et al (1987) A procedure to identify genes affecting maturity using soybean isoline testers. Crop Sci 27:1127–1132

    Article  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C et al (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    Article  PubMed  CAS  Google Scholar 

  • Mignone F, Gissi C, Liuni S et al (2002) Untranslated regions of mRNAs. Genome Biol 3:0004.1–0004.10

    Article  Google Scholar 

  • Moon J, Suh SS, Lee H et al (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time interacting pathways as a basis for diversity. Plant Cell 14(suppl 1):S111–S130

    PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E et al (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini L, Tan S, Richmond TJ (1995) Structure of serum response factor core bound to DNA. Nature 376:490–498

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Wang M, Meyerowitz EM (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 24:3134–3141

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Santelli E, Richmond TJ (2000) Crystal structure of MEF2A core bound to DNA at 1.5 Å resolution. J Mol Biol 297:437–449

    Article  PubMed  CAS  Google Scholar 

  • Searle I, He Y, Turck F et al (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    Article  PubMed  CAS  Google Scholar 

  • Seo E, Lee H, Jeon J et al (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  PubMed  CAS  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Sridhar VV, Surendrarao A, Liu Z et al (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159–3166

    Article  PubMed  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F et al (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Sun H, Jia Z, Cao D et al (2011) GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE 6:e29238

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR, Chen L, Moon YH et al (2003) Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol 6:29–35

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA et al (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotech J 1:361–369

    Article  CAS  Google Scholar 

  • Tan S, Richmond TJ (1998) Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Nature 391:660–666

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Becker A, Di Rosa A et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Shen Y, Chang HC et al (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66

    Article  PubMed  CAS  Google Scholar 

  • van Der Velden AW, Thomas AAM (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106

    Article  PubMed  Google Scholar 

  • Verelst W, Saedler H, Münster T (2007) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447–460

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, **a Z, Hideshima R et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28:182–188

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Ma Q, Yam K-M et al (2006) In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta 223:725–735

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed  CAS  Google Scholar 

  • **a Z, Watanabe S, Yamada T et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164

    Article  PubMed  CAS  Google Scholar 

  • **e ZM, Zou HF, Lei G et al (2009) Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE 4:e6898

    Article  PubMed  Google Scholar 

  • Yoo SK, Chung KS, Kim J et al (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139:770–778

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Li H, Li R et al (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA 105:21028–21033

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Dai X, Xv J et al (2012) Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Mol Bio Rep 39:6967–6974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ryo Akashi at the Biological Resource Center in Lotus and Glycine (University of Miyazaki, Japan) for providing the Superroot culture of L. corniculatus; Professor Peter Gresshoff (University of Queensland, Australia) for A. rhizogenes strain K599 and the binary vector pGFPGUSPlus; and Dr. Hongbo Sun (Minzu University of China) for stimulating discussion on experimental design. This work was supported by the National Program on Key Basic Research Project (973 Program) of China (2009CB118400) and Natural Science Foundation of China (30471054).

Conflict of interest

The authors declare that they have no conflict interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfu Han.

Additional information

Communicated by K. Chong.

X. Na and B. Jian contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, X., Jian, B., Yao, W. et al. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Rep 32, 1219–1229 (2013). https://doi.org/10.1007/s00299-013-1419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1419-0

Keywords

Navigation