Log in

Improved methods in Agrobacterium–mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 μM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsley PJ, Collins GG, Sedgley M (2000) Adventitious shoot regeneration from leaf explants of almond (Prunus dulcis Mill.). In Vitro Cell Dev Biol-Plant 36:470–474

    Article  CAS  Google Scholar 

  • Ainsley PJ, Collins GG, Sedgley M (2001a) Factors affecting Agrobacterium-mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.). J Hort Sci Biotech 76:522–528

    CAS  Google Scholar 

  • Ainsley PJ, Collins GG, Sedgley M (2001b) In vitro rooting of almond (Prunus dulcis Mill.). In Vitro Cell Dev Biol-Plant 33:778–785

  • Archilleti T, Lauri P, Damiano C (1995) Agrobacterium-mediated transformation of almond pieces. Plant Cell Rep 14:267–272

    Article  Google Scholar 

  • De Bondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus x domestica): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    Article  CAS  Google Scholar 

  • Goldsworthy A, Street HE (1965) The carbohydrate nutrition of tomato roots VIII. The mechanism of the inhibition by d-mannose of the respiration of excised roots. Ann Bot 29:45–48

    CAS  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plants cells using d-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localisation of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekama A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–212

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan MW (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–666

    CAS  Google Scholar 

  • Joersbo M, Donaldson I, Krieberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugarbeet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967

    Article  CAS  Google Scholar 

  • Lindsey K, Gallois P (1990) Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens. J Exp Bot 41:529–536

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Machado M, Camara Machado AD, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B, Katinger H (1992) Regeneration of transgenic plants of Prunus armenica containing the coat protein gene of plum pox virus. Plant Cell Rep 11:25–29

    Article  CAS  Google Scholar 

  • Matsuda N, Gao M, Isuzugawa K, Takashima T, Nishimura K (2005) Development of an Agrobaterium-mediated transformation method for pear (Pyrus communis L.) with leaf-section and axillary shoot-meristem explants. Plant Cell Rep 24:45–51

    Article  PubMed  CAS  Google Scholar 

  • Mehra A, Mehra PN (1974) Organogenesis and plantlet formation in vitro in almond. Bot Gaz 135:61–73

    Article  Google Scholar 

  • Miguel CM, Druart P, Oliveira MM (1996) Shoot regeneration from adventitious buds induced on juvenile and adult almond (Prunus dulcis Mill.) explants. In Vitro Cell Dev Biol-Plant 32:148–153

    Article  Google Scholar 

  • Miguel CM, Oliveira MM (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18:387–393

    Article  CAS  Google Scholar 

  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    Article  PubMed  CAS  Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, De Bondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Cerevera M, Juarez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgen Res 14:15

    Article  CAS  Google Scholar 

  • Seabra R, Pais MS (1998) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  CAS  Google Scholar 

  • Sedgley M (1994) Self-incompatibility in woody horticultural species. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants, Kluwer Academic Publishers, London, pp 141–163

    Google Scholar 

  • Sigareva M, Spivey R, Willits MG, Kraimer CM, Chang Y-F (2004) An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23:236–245

    Article  PubMed  CAS  Google Scholar 

  • Sriskandarajah S, Goodwin PB, Speirs P (1994) Genetic transformation of the apple scion cultivar Delicious via Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 36:317–329

    Article  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    Article  CAS  Google Scholar 

  • Yao JL, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14:407–412

    Article  CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult 37:257–269

    CAS  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Article  CAS  Google Scholar 

  • Zhang S, Zhu L-H, Li X-Y, Ahlman A, Welander M (2005) Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. chinensis). Plant Sci 168:137–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an ARC (Australian Research Council) linkage grant and the Almond Board of Australia. We thank Dr. Ursula Langridge for care of the almond plants in the PC2 containment glasshouse. We thank SYNGENTA for providing the pNOV2819 manA plasmid

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent N. Kaiser.

Additional information

Communicated by L. Peña

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S.A., Kaiser, B.N., Franks, T. et al. Improved methods in Agrobacterium–mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25, 821–828 (2006). https://doi.org/10.1007/s00299-006-0139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0139-0

Keywords

Navigation