Log in

How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases?

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Hypophosphatasia (HP) is a rare inborn error of bone and mineral metabolism characterized by a defect in the tissue non-specific alkaline phosphatase (TNSALP) gene. Calcium pyrophosphate dihydrate (CPPD) crystals are known to accumulate as substrates of TNSALP in tissues and joints of patients with HP. In CPPD-induced arthritis these crystals are known to induce an inflammatory response. HP patients do suffer from pain in their lower extremities. However, it is not clear whether CPPD crystals contribute to these musculoskeletal complaints in HP. As long as there is no curative treatment of HP, symptomatic treatment in order to improve clinical features, especially with regard to pain and physical activity, is of major interest to the patients. Knowledge of the mechanisms underlying crystal-induced cell activation, however, is limited. Here we describe recent advances in elucidating the signal transduction pathways activated by CPPD crystals as endogenous “danger signals”. Recent investigations provided evidence that Toll/interleukin-1 receptor (TIR) domain containing receptors including Toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R), as well as the triggering receptor expressed on myeloid cells 1 (TREM-1) and the NACHT-leucin rich repeat and pyrin-domain-containing protein (NALP3) containing inflammasome are essentially involved in acute CPPD crystal-induced inflammation. These receptors are considered in part as components of the innate immune system. Further studies are needed to improve our understanding of the pathophysiological mechanisms leading to inflammation and tissue destruction associated with deposition of microcrystals. They might support the development of new therapeutic strategies for crystal-induced inflammation. Eventually, patients with HP might as well profit from such strategies addressing these metabolic disorders secondary to the gene defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP-1:

Activating protein 1

ASC:

Apoptosis-associated speck-like protein

CAPS:

Cryopyrin-associated periodic syndrome

CC:

Chondrocalcinosis

CINCA:

Chronic infantile neurologic cutaneous and articular syndrome

CNO:

Chronic non-bacterial osteomyelitis

CPPD:

Calcium pyrophosphate dihydrate

CRMO:

Chronic recurrent multifocal osteomyelitis

ERK 1/2:

Extracellular signal-regulated kinase 1/2

FCAS:

Familial cold autoinflammatory syndrome

HP:

Hypophosphatasia

IKK:

IкB kinase

IL-1R:

Interleukin-1 receptor

iNOS:

Inducible nitric oxide synthetase

IRAK:

IL-1-associated kinase

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

LRR:

Leucin-rich repeats

MAP:

Mitogen-activated protein kinase

MDP:

Muramyl dipeptide

MWS:

Muckle-Wells syndrome

MMP:

Matrix metalloproteinase

MSU:

Monosodium urate

MyD88:

Myeloid differentiation factor 88

NALP3:

NACHT-leucin rich repeat and pyrin-domain-containing protein

NLR:

Nod-like receptor

NO:

Nitric oxide

NOD:

Nucleotide-binding oligomerization domain

NOMID:

Neonatal onset multisystem inflammatory disease

NSAID:

Non-steroidal anti-inflammatory drugs

PAMP:

Pathogen-associated molecular pattern

PL:

Pyridoxal

PLP:

Pyridoxal 5′-phosphate

PPi:

Inorganic pyrophosphate

PRR:

Pathogen recognition receptor

PTH:

Parathyreoid hormone

PYD:

Pyrin domain

RLR:

Retinoic acid-like receptor

TIR:

Toll/interleukin-1 receptor

TIRAP:

TIR domain-containing adaptor protein

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNSALP:

Tissue non-specific alkaline phosphatase

TRAF6:

TNF receptor-associated factor 6

TREM-1:

Triggering receptor expressed on myeloid cells 1

References

  1. Whyte MP (1995) Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly S (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 4095–4111

    Google Scholar 

  2. Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN et al (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445. doi:10.1172/JCI117814

    Article  PubMed  CAS  Google Scholar 

  3. Fedde KN, Whyte MP (1990) Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5’-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet 47:767–775

    PubMed  CAS  Google Scholar 

  4. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449. doi:10.1073/pnas.142063399

    Article  PubMed  CAS  Google Scholar 

  5. Shohat M, Rimoin DL, Gruber HE, Lachman RS (1991) Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr Radiol 21:421–427. doi:10.1007/BF02026677

    Article  PubMed  CAS  Google Scholar 

  6. Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>;C, p.M226T; c.1112C>;T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661. doi:10.1016/j.bone.2007.01.020

    Article  PubMed  CAS  Google Scholar 

  7. Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2:40. doi:10.1186/1750-1172-2-40

    Article  PubMed  Google Scholar 

  8. Girschick HJ, Mornet E, Beer M, Warmuth-Metz M, Schneider P (2007) Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy. BMC Pediatr 7:3. doi:10.1186/1471-2431-7-3

    Article  PubMed  Google Scholar 

  9. Girschick HJ, Raab P, Surbaum S, Trusen A, Kirschner S, Schneider P et al (2005) Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis 64:279–285. doi:10.1136/ard.2004.023838

    Article  PubMed  CAS  Google Scholar 

  10. Girschick HJ, Schneider P, Haubitz I, Hiort O, Collmann H, Beer M et al (2006) Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis 1:24. doi:10.1186/1750-1172-1-24

    Article  PubMed  CAS  Google Scholar 

  11. Girschick HJ, Schneider P, Kruse K, Huppertz HI (1999) Bone metabolism and bone mineral density in childhood hypophosphatasia. Bone 25:361–367. doi:10.1016/S8756-3282(99)00164-7

    Article  PubMed  CAS  Google Scholar 

  12. Girschick HJ, Seyberth HW, Huppertz HI (1999) Treatment of childhood hypophosphatasia with nonsteroidal antiinflammatory drugs. Bone 25:603–607. doi:10.1016/S8756-3282(99)00203-3

    Article  PubMed  CAS  Google Scholar 

  13. Girschick HJ, Zimmer C, Klaus G, Darge K, Dick A, Morbach H (2007) Chronic recurrent multifocal osteomyelitis: what is it and how should it be treated? Nat Clin Pract Rheumatol 3:733–738. doi:10.1038/ncprheum0653

    Article  PubMed  Google Scholar 

  14. Cheung HS (2005) Biologic effects of calcium-containing crystals. Curr Opin Rheumatol 17:336–340. doi:10.1097/01.bor.0000155362.83990.80

    Article  PubMed  CAS  Google Scholar 

  15. Jones AC, Chuck AJ, Arie EA, Green DJ, Doherty M (1992) Diseases associated with calcium pyrophosphate deposition disease. Semin Arthritis Rheum 22:188–202. doi:10.1016/0049-0172(92)90019-A

    Article  PubMed  CAS  Google Scholar 

  16. Akahoshi T, Murakami Y, Kitasato H (2007) Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol 19:146–150. doi:10.1097/BOR.0b013e328014529a

    Article  PubMed  CAS  Google Scholar 

  17. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi:10.1038/nature04516

    Article  PubMed  CAS  Google Scholar 

  18. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: First line of the immune response to cell stress. Cell 126:659–662. doi:10.1016/j.cell.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  19. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521. doi:10.1038/nature01991

    Article  PubMed  CAS  Google Scholar 

  20. Schilling F (Dezember 2006) SAPHO syndrom. Orphanet Enzyklopädie

  21. Hayem G, Bouchaud-Chabot A, Benali K, Roux S, Palazzo E, Silbermann-Hoffman O et al (1999) SAPHO syndrome: a long-term follow-up study of 120 cases. Semin Arthritis Rheum 29:159–171. doi:10.1016/S0049-0172(99)80027-4

    Article  PubMed  CAS  Google Scholar 

  22. Schilling F, Marker-Hermann E, Rheumatol Z (2003) Chronic recurrent multifocal osteomyelitis in association with chronic inflammatory bowel disease: entheropathic. CRMO 62:527–538. doi:10.1007/s00393-003-0526-7

    CAS  Google Scholar 

  23. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357:1925–1928. doi:10.1016/S0140-6736(00)05063-7

    Article  PubMed  CAS  Google Scholar 

  24. Murray PJ (2005) NOD proteins: an intracellular pathogen-recognition system or signal transduction modifiers? Curr Opin Immunol 17:352–358. doi:10.1016/j.coi.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  25. Drenth JP, van der Meer JW (2006) The inflammasome–a linebacker of innate defense. N Engl J Med 355:730–732. doi:10.1056/NEJMcibr063500

    Article  PubMed  CAS  Google Scholar 

  26. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236. doi:10.1038/nature04517

    Article  PubMed  CAS  Google Scholar 

  27. Lanzavecchia A, Sallusto F (2007) Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol 19:268–274. doi:10.1016/j.coi.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  28. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40. doi:10.1038/nri1997

    Article  PubMed  CAS  Google Scholar 

  29. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232. doi:10.1038/nature04515

    Article  PubMed  CAS  Google Scholar 

  30. Sutterwala FS, Ogura Y, Flavell RA (2007) The inflammasome in pathogen recognition and inflammation. J Leukoc Biol 82:259–264. doi:10.1189/jlb.1206755

    Article  PubMed  CAS  Google Scholar 

  31. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. doi:10.1093/intimm/dxh186

    Article  PubMed  CAS  Google Scholar 

  32. Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84:712–725. doi:10.1007/s00109-006-0084-y

    Article  PubMed  CAS  Google Scholar 

  33. Ting JP, Kastner DL, Hoffman HM (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6:183–195. doi:10.1038/nri1788

    Article  PubMed  CAS  Google Scholar 

  34. Chuck AJ, Pattrick MG, Hamilton E, Wilson R, Doherty M (1989) Crystal deposition in hypophosphatasia: a reappraisal. Ann Rheum Dis 48:571–576

    Article  PubMed  CAS  Google Scholar 

  35. Bouchard L, de Medicis R, Lussier A, Naccache PH, Poubelle PE (2002) Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J Immunol 168:5310–5317

    PubMed  CAS  Google Scholar 

  36. Dayer JM, Evequoz V, Zavadil-Grob C, Grynpas MD, Cheng PT, Schnyder J et al (1987) Effect of synthetic calcium pyrophosphate and hydroxyapatite crystals on the interaction of human blood mononuclear cells with chondrocytes, synovial cells, and fibroblasts. Arthritis Rheum 30:1372–1381. doi:10.1002/art.1780301208

    Article  PubMed  CAS  Google Scholar 

  37. Liu-Bryan R, Liote F (2005) Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine 72:295–302. doi:10.1016/j.jbspin.2004.12.010

    Article  PubMed  Google Scholar 

  38. Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R (2005) TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 174:5016–5023

    PubMed  CAS  Google Scholar 

  39. Reginato AM, Olsen BR (2007) Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr Opin Rheumatol 19:134–145. doi:10.1097/BOR.0b013e328040c00b

    Article  PubMed  CAS  Google Scholar 

  40. Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U et al (2004) Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 172:1256–1265

    PubMed  CAS  Google Scholar 

  41. Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T et al (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162:1221–1227

    PubMed  CAS  Google Scholar 

  42. Murakami Y, Akahoshi T, Hayashi I, Endo H, Kawai S, Inoue M et al (2006) Induction of triggering receptor expressed on myeloid cells 1 in murine resident peritoneal macrophages by monosodium urate monohydrate crystals. Arthritis Rheum 54:455–462. doi:10.1002/art.21633

    Article  PubMed  CAS  Google Scholar 

  43. Carneiro LA, Travassos LH, Girardin SE (2007) Nod-like receptors in innate immunity and inflammatory diseases. Ann Med 39:581–593. doi:10.1080/07853890701576172

    Article  PubMed  CAS  Google Scholar 

  44. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    PubMed  CAS  Google Scholar 

  45. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G et al (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116:2262–2271. doi:10.1172/JCI28075

    Article  PubMed  CAS  Google Scholar 

  46. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  47. Stylianou E, Saklatvala J (1998) Interleukin-1. Int J Biochem Cell Biol 30:1075–1079. doi:10.1016/S1357-2725(98)00081-8

    Article  PubMed  CAS  Google Scholar 

  48. Schiff MH (2000) Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis 59(Suppl 1):i103–i108. doi:10.1136/ard.59.suppl_1.i103

    Article  PubMed  CAS  Google Scholar 

  49. den Broeder AA, de Jong E, Franssen MJ, Jeurissen ME, Flendrie M, van den Hoogen FH (2006) Observational study on efficacy, safety, and drug survival of anakinra in rheumatoid arthritis patients in clinical practice. Ann Rheum Dis 65:760–762. doi:10.1136/ard.2004.033662

    Article  Google Scholar 

  50. Hallegua DS, Weisman MH (2002) Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases. Ann Rheum Dis 61:960–967. doi:10.1136/ard.61.11.960

    Article  PubMed  CAS  Google Scholar 

  51. Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785. doi:10.1016/S0140-6736(04)17401-1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Girschick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, C., Morbach, H., Richl, P. et al. How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases?. Rheumatol Int 29, 229–238 (2009). https://doi.org/10.1007/s00296-008-0710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-008-0710-9

Keywords

Navigation