Log in

The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In Aspergillus nidulans, production of extracellular proteases in response to carbon starvation and to a lesser extent nitrogen starvation is controlled by XprG, a putative transcriptional activator. In this study the role of genes involved in carbon catabolite repression and the role of protein as an inducer of extracellular protease gene expression were examined. The addition of exogenous protein to the growth medium did not increase extracellular protease activity whether or not additional carbon or nitrogen sources were present indicating that induction does not play a major role in the regulation of extracellular proteases. Northern blot analysis confirmed that protein is not an inducer of the major A. nidulans protease, PrtA. Mutations in the creA, creB and creC genes increased extracellular protease levels in medium lacking a carbon source suggesting that they may have a role in the response to carbon starvation as well as carbon catabolite repression. Analysis of glkA4 frA2 and creAΔ4 mutants showed that the loss of glucose signalling or the DNA-binding protein which mediates carbon catabolite repression did not abolish glucose repression but did increase extracellular protease activity. This increase was XprG-dependent indicating that the effect of these genes may be through modulation of XprG activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arst HN Jr, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141

    Article  PubMed  CAS  Google Scholar 

  • Bailey C, Arst HN Jr (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Article  PubMed  CAS  Google Scholar 

  • Bernardo SMH, Gray K-A, Todd RB, Cheetham BF, Katz ME (2007) Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Mol Genet Genomics 277:519–532

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1974) Aspergillus nidulans. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 447–510

    Google Scholar 

  • Clutterbuck AJ (1993) Aspergillus nidulans (nuclear genes). In: O’Brien SJ (ed) Locus maps of complex genomes, vol 3. Lower eukaryotes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 371–384

    Google Scholar 

  • Cohen BL (1972) Ammonium repression of extracellular protease in Aspergillus nidulans. J Gen Microbiol 71:293–299

    CAS  Google Scholar 

  • Cohen BL (1973a) Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J Gen Microbiol 79:311–320

    PubMed  CAS  Google Scholar 

  • Cohen BL (1973b) The neutral and alkaline proteases of Aspergillus nidulans. J Gen Microbiol 77:521–528

    PubMed  CAS  Google Scholar 

  • Cohen BL (1975) Regulation of two extracellular proteases of Neurospora crassa by induction and by carbon-, nitrogen- and sulfur-metabolite repression. Arch Biochem Biophys 169:324–330

    Article  PubMed  CAS  Google Scholar 

  • Cohen BL (1981) Regulation of protease production in Aspergillus. Trans Br Mycol Soc 76:447–450

    Article  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    PubMed  CAS  Google Scholar 

  • Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    PubMed  CAS  Google Scholar 

  • Emri T, Molnár Z, Veres T, Pusztahelyi T, Dudás G, Pócsi I (2006) Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans. Mycol Res 110:1172–1178

    Article  PubMed  CAS  Google Scholar 

  • Esposo EA, Tilburn J, Arst HN Jr, Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956

    Google Scholar 

  • Fidel S, Doonan JH, Morris NR (1988) Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a γ-actin. Gene 70:283–293

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Felenbok B (2004) The onset of carbon catabolic repression and interplay between specific induction and carbon catabolite repression in Aspergillus nidulans. In: Brambl R, Marzluf GA (eds) The mycota III biochemistry and molecular biology, 2nd edn. Springer, Berlin, pp 403–420

    Google Scholar 

  • Flipphi M, van de Vondervoort PJI, Ruijter GJG, Visser J, Arst HN Jr, Felenbok B (2003) Onset of carbon catabolite repression in Aspergillus nidulans: parallel involvement of hexokinase and glucokinase in sugar signalling. J Biol Chem 278:11849–11857

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ (1973) Pleiotropic mutants affecting the control of nitrogen metabolism in Aspergillus nidulans. Mol Gen Genet 125:99–107

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ (1974) Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. J Bacteriol 120:1116–1123

    PubMed  CAS  Google Scholar 

  • Hynes MJ, Kelly JM (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204

    Article  PubMed  CAS  Google Scholar 

  • Jarai G, Buxton F (1994) Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet 26:238–244

    Article  PubMed  CAS  Google Scholar 

  • Katz ME, Rice RN, Cheetham BF (1994) Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150:287–292

    Article  PubMed  CAS  Google Scholar 

  • Katz ME, Flynn PK, vanKuyk P, Cheetham BF (1996) Mutations affecting extracellular protease production in the filamentous fungus, Aspergillus nidulans. Mol Gen Genet 250:715–724

    PubMed  CAS  Google Scholar 

  • Katz ME, Masoumi A, Burrows SR, Shirtliff CG, Cheetham BF (2000) The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of the extracellular proteases. Genetics 156:1559–1571

    PubMed  CAS  Google Scholar 

  • Katz ME, Gray K-A, Cheetham BF (2006) The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 43:190–199

    Article  PubMed  CAS  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN Jr (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    PubMed  CAS  Google Scholar 

  • Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    Article  PubMed  CAS  Google Scholar 

  • Reinert WR, Patel VB, Giles NH (1981) Genetic regulation of the qa gene cluster of Neurospora crassa: induction of qa messenger ribonucleic acid and dependency on qa-1 function. Mol Cell Biol 1:829–835

    PubMed  CAS  Google Scholar 

  • Shroff RA, Lockington RA, Kelly JM (1996) Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol 42:950–959

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA, O’Connor SM, Hynes MJ, Lockington RA, Kelly JM (1997) Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22:28–38

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Fraser JA, Wong KH, Davis MA, Hynes MJ (2005) Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell 4:1646–1653

    Article  PubMed  CAS  Google Scholar 

  • vanKuyk PA, Cheetham BF, Katz ME (2000) Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fungal Genet Biol 29:201–210

    Article  PubMed  CAS  Google Scholar 

  • van den Hombergh JPTW (1996) An analysis of the proteolytic system in Aspergillus in order to improve protein production. Thesis Landbouwuniversiteit Wageningen.

Download references

Acknowledgments

We gratefully acknowledge J.M. Kelly for providing A. nidulans strains, J.P. van den Hombergh for the provision of a copy of his doctoral thesis, and the Australian Research Council for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. Katz.

Additional information

Communicated by G. Braus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, M.E., Bernardo, S.M. & Cheetham, B.F. The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 54, 47–55 (2008). https://doi.org/10.1007/s00294-008-0198-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0198-6

Keywords

Navigation