Log in

Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A modified Agrobacterium-mediated transformation method for the efficient disruption of two genes encoding signaling compounds of the mycoparasite Trichoderma atroviride is described, using the hph gene of Escherichia coli as selection marker. The transformation vectors contained about 1 kb of 5′ and 3′ non-coding regions from the tmk1 (encoding a MAP kinase) or tga3 (encoding an α-subunit of a heterotrimeric G protein) target loci flanking a selection marker. Transformation of fungal conidia and selection on hygromycin-containing media applying an overlay-based procedure, which overcomes the lack of formation of distinct single colonies by the fungus, led to stable clones for both disruption constructs. Southern and PCR analyses proved gene disruption by single-copy homologous integration with a frequency of approximately 60% for both genes; and the loss of tmk1 and tga3 transcript formation in the disruptants was demonstrated by RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3
Fig. 4
Fig. 5A, B

References

  • Bird D, Bradshaw R (1997) Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 255:219–225

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Den Dulk-Ras A, Beijersbergen AGM, Hooykaas PJJ (1995) Trans-kingdom transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  Google Scholar 

  • Brunner K, Peterbauer C, Mach RL, Lorito M, Zeilinger S, Kubicek CP (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43:289–295

    CAS  PubMed  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935

    CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    CAS  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • Gouka, RJ, Gerk C, Hooykaas PJJ, Bundock P, Musters W, Verrips CT, De Groot MJA (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  CAS  PubMed  Google Scholar 

  • Gruber F, Visser J, Kubicek CP, De Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18:71–76

    CAS  PubMed  Google Scholar 

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 229–265

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kullnig CM, Krupica T, Woo SL, Mach RL, Rey M, Benitez T, Lorito M, Kubicek CP (2001) Confusion abounds over identity of Trichoderma biocontrol isolates. Mycol Res 105:70–72

    Article  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    CAS  PubMed  Google Scholar 

  • Mozo T, Hooykaas PJ (1991) Electroporation of megaplasmids into Agrobacterium. Plant Mol Biol 16:917–918

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz B. (2003) TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455

    Article  CAS  PubMed  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    CAS  Google Scholar 

  • Peterbauer C, Litscher D, Kubicek CP (2002) The Trichoderma atroviride seb1 (stress response element binding) gene encodes an AGGGG-binding protein which is involved in the response to high osmolarity stress. Mol Gen Genomics 268:223–231

    Article  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CAMJJ van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    CAS  PubMed  Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Suominen PL, Mäntylä AL, Karhunen T, Hakola S, Nevalainen H (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241:523–530

    CAS  PubMed  Google Scholar 

  • Woo S, Donzelli B, Scala F, Mach RL, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant-Microbe Interact 12:419–429

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genomics 268:645–655

    CAS  Google Scholar 

  • Zwiers L-H, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.J.J. Hooykaas is appreciated for providing A. tumefaciens strain LBA1100 and plasmid pTAS5. C.P. Kubicek and R.L. Mach are acknowledged for providing the infrastructural facilities and for critically reviewing the manuscript. This work was supported by grants from the Austrian Programme for Advanced Research and Technology of the Österreichische Akademie der Wissenschaften and from Fonds zur Förderung Wissenschaftlicher Forschung (P15483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Zeilinger.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeilinger, S. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 45, 54–60 (2004). https://doi.org/10.1007/s00294-003-0454-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0454-8

Keywords

Navigation