Log in

Influence of surface-modified cellulose nanocrystal on the rheological, thermal and mechanical properties of PLA nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Agave Tequilana Weber (ATW) is the base ingredient for preparing tequila liquor; tequila production yields tons of waste rich in cellulose representing environmental issues. Cellulose nanocrystals (CNC), the crystalline regions extracted from cellulose microcrystals, were obtained from the waste of ATW as an attractive alternative to reinforce polymeric materials. CNC were grafted with (poly (2-ethyl hexyl acrylate) to improve compatibility with hydrophobic polymers. The CNC pristine (CNCP) and grafted (CNCG) were dispersed in PLA (0.5, 1 and 2 wt.%), employing several melt processing stages. CNC distribution within PLA matrix was followed using SEM and TEM. Also, thermal properties were characterized through differential scanning calorimetry and thermogravimetric analysis. Thermal stability of nanocomposites increased with CNC, CNCG nanocomposites showed better results (Td ~ 370 °C) than CNCP nanocomposites (Td ~ 366 °C). The degree of crystallinity showed for CNCG (25.1%) was higher than for CNCP (21.1%) nanocomposites. The tensile properties were improved with CNCP (0.44 MPa) and CNCG (2.11 MPa) content. The CNC increased the shear properties of PLA melt and exhibited a strain-hardening behavior during elongational rheology test. The CNC and CNCG are an interesting alternative to modify the melt rheological behavior and the mechanical behavior in the solid-state of low melt strength polymers, which could be thermally degraded during processing. Composites could be used to produce films for the food industry through blow-extrusion processing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    CAS  Google Scholar 

  2. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542

    CAS  Google Scholar 

  3. Eslami H, Kamal MR (2013) Elongational rheology of biodegradable poly (lactic acid)/poly [(butylene succinate)-co-adipate] binary blends and poly (lactic acid)/poly [(butylene succinate)-co-adipate]/clay ternary nanocomposites. J Appl Polym Sci 127(3):2290–2306

    CAS  Google Scholar 

  4. Nofar M, Park CB (2014) Poly (lactic acid) foaming. Prog Polym Sci 39(10):1721–1741

    CAS  Google Scholar 

  5. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd Polym 90(2):948–956

    CAS  Google Scholar 

  6. Mallet B, Lamnawar K, Maazouz A (2014) Improvement of blown film extrusion of poly (lactic acid): structure–processing–properties relationships. Polym Eng Sci 54(4):840–857

    CAS  Google Scholar 

  7. Hernández-Alamilla M, Valadez-Gonzalez A (2016) The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide. J Polym Engin 36(1):31–41

    Google Scholar 

  8. Byrne F, Ward P, Kennedy J, Imaz N, Hughes D, Dowling D (2009) The effect of masterbatch addition on the mechanical, thermal, optical and surface properties of poly (lactic acid). J Polym Environ 17(1):28–33

    CAS  Google Scholar 

  9. Tajdari A, Babaei A, Goudarzi A, Partovi R, Rostami A (2021) Hybridization as an efficient strategy for enhancing the performance of polymer nanocomposites. Polym Compos 42(12):6801–6815

    CAS  Google Scholar 

  10. Rostami A, Vahdati M, Alimoradi Y, Karimi M, Nazockdast H (2018) Rheology provides insight into flow induced nano-structural breakdown and its recovery effect on crystallization of single and hybrid carbon nanofiller filled poly (lactic acid). Polymer 134:143–154

    CAS  Google Scholar 

  11. Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50(2):611–619

    CAS  Google Scholar 

  12. Bondeson D, Oksman K (2007) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos A Appl Sci Manuf 38(12):2486–2492

    Google Scholar 

  13. Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S et al (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166(2):772–778

    CAS  Google Scholar 

  14. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915

    CAS  Google Scholar 

  15. Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J et al (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 112:532–546

    CAS  Google Scholar 

  16. Özdemir B, Nofar M (2021) Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis. Carbohydr Polym 268:118243

    PubMed  Google Scholar 

  17. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4:165–188. https://doi.org/10.4236/jbnb.2013.42022

    Article  CAS  Google Scholar 

  18. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    CAS  PubMed  Google Scholar 

  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    CAS  PubMed  Google Scholar 

  20. Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68

    CAS  PubMed  Google Scholar 

  21. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8

    Google Scholar 

  22. Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crop Prod 62:552–559

    CAS  Google Scholar 

  23. Pech-Cohuo S-C, Canche-Escamilla G, Valadez-González A, Fernández-Escamilla VVA, Uribe-Calderon J (2018) Production and modification of cellulose nanocrystals from Agave tequilana weber waste and its effect on the melt rheology of PLA. Intern J Polym Sci 2018(2):1–14

    Google Scholar 

  24. Palacios Hinestroza H, Hernández Diaz JA, Esquivel Alfaro M, Toriz G, Rojas OJ, Sulbarán-Rangel BC (2019) Isolation and characterization of nanofibrillar cellulose from agave tequilana weber bagasse. Adv Mater Sci Eng 2019:1342547. https://doi.org/10.1155/2019/1342547

    Article  CAS  Google Scholar 

  25. Gallardo-Sánchez MA, Diaz-Vidal T, Navarro-Hermosillo AB, Figueroa-Ochoa EB, Ramirez CR, Anzaldo HJ et al (2021) Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse Acid Hydrol Nanomater 11(2):520

    Google Scholar 

  26. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630

    CAS  Google Scholar 

  27. Ferreira F, Pinheiro I, Gouveia R, Thim G, Lona L (2017) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 39:E9–E29

    Google Scholar 

  28. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv 6(55):49747–49759

    CAS  Google Scholar 

  29. Goffin A-L, Habibi Y, Raquez J-M, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4(7):3364–3371

    CAS  PubMed  Google Scholar 

  30. Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L et al (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Process morphol Carbohydr polym 96(2):611–620

    CAS  Google Scholar 

  31. Shojaeiarani J, Bajwa DS, Stark NM, Bajwa SG (2019) Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos Part B Eng 161:483–489

    CAS  Google Scholar 

  32. Wu F, Lan X, Ji D, Liu Z, Yang W, Yang M (2013) Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites. J Appl Polym Sci 129(5):3019–3027. https://doi.org/10.1002/app.38585

    Article  CAS  Google Scholar 

  33. Abdallah W, Mirzadeh A, Tan V, Kamal MR (2019) Influence of nanoparticle pretreatment on the thermal, rheological and mechanical properties of pla-pbsa nanocomposites incorporating cellulose nanocrystals or montmorillonite. Nanomaterials 9(1):29

    Google Scholar 

  34. Wei L, Luo S, McDonald AG, Agarwal UP, Hirth KC, Matuana LM et al (2017) Preparation and characterization of the nanocomposites from chemically modified nanocellulose and poly (lactic acid). J Renew Mater 5(5):410–422

    CAS  Google Scholar 

  35. Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669

    CAS  Google Scholar 

  36. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohyd Polym 83(4):1834–1842

    CAS  Google Scholar 

  37. Mukherjee T, Sani M, Kao N, Gupta RK, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–62

    CAS  Google Scholar 

  38. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336

    Google Scholar 

  39. Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50(1):121–128

    CAS  Google Scholar 

  40. Hsieh Y-L (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48(22):7837–7846. https://doi.org/10.1007/s10853-013-7512-5

    Article  CAS  Google Scholar 

  41. Fakirov S (2020) Polymer nanocomposites: why their mechanical performance does not justify the expectation and a possible solution to the problem? Express Polym Lett 14(5):436–466

    CAS  Google Scholar 

  42. Müller A, Avila M, Saenz G, Salazar J (2015) Crystallization of PLA-based materials. In: Jimenez A, Peltzer M, Ruseckaite R (eds) Poly (lactic acid) science and technology: processing, properties, additives and applications, vol 12. Royal Society of Chemistry, United Kingdom, pp 66–98

    Google Scholar 

  43. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) Compatible and crystallization properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. J Appl Polym Sci 116(2):680–687

    CAS  Google Scholar 

  44. De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly (lactic acid). Thermochim Acta 522(1–2):128–134

    Google Scholar 

  45. Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohyd Polym 121:265–275

    CAS  Google Scholar 

  46. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24

    CAS  Google Scholar 

  47. Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113

    CAS  Google Scholar 

  48. Lizundia E, Vilas J, León L (2015) Crystallization, structural relaxation and thermal degradation in Poly (l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–65

    CAS  PubMed  Google Scholar 

  49. Tabi T, Sajó I, Szabó F, Luyt A, Kovács J (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett 4(10):659–668

    CAS  Google Scholar 

  50. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022

    Article  CAS  Google Scholar 

  51. Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR (2018) Rheological, mechanical, and thermal properties of polylactide/cellulose nanofiber biocomposites. Polym Compos 39(5):1752–1762

    CAS  Google Scholar 

  52. Lee JH, Park SH, Kim SH (2013) Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 21(11):1218–1225

    CAS  Google Scholar 

  53. Grassie N, Speakman J (1971) Thermal degradation of poly (alkyl acrylates) I preliminary investigations. J Polym Sci Part A-1 Polym Chem 9(4):919–929

    CAS  Google Scholar 

  54. Jamshidian M, Arab TE, Cleymand F, Leconte S, Falher T, Desobry S (2012) Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohyd Polym 87(2):1763–1773. https://doi.org/10.1016/j.carbpol.2011.09.089

    Article  CAS  Google Scholar 

  55. Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94(1):74–82. https://doi.org/10.1016/j.polymdegradstab.2008.10.004

    Article  CAS  Google Scholar 

  56. Heidarian P, Behzad T, Karimi K, Sain M (2018) Properties investigation of recycled polylactic acid reinforced by cellulose nanofibrils isolated from bagasse. Polym Compos 39(10):3740–3749

    CAS  Google Scholar 

  57. Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733. https://doi.org/10.1016/j.compscitech.2009.08.016

    Article  CAS  Google Scholar 

  58. Zhang X, Wyss UP, Pichora D, Goosen MFA (1992) An investigation of the synthesis and thermal stability of poly(dl-lactide). Polym Bull 27(6):623–629. https://doi.org/10.1007/BF00297431

    Article  CAS  Google Scholar 

  59. Meng Q, Heuzey M-C, Carreau PJ (2012) Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym Degrad Stab 97(10):2010–2020

    CAS  Google Scholar 

  60. Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658

    CAS  Google Scholar 

  61. Ching YC, Ali ME, Abdullah LC, Choo KW, Kuan YC, Julaihi SJ et al (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23(2):1011–1030

    CAS  Google Scholar 

  62. Al-Itry R, Lamnawar K, Maazouz A (2015) Biopolymer blends based on poly (lactic acid): shear and elongation rheology/structure/blowing process relationships. Polymers 7(5):939–962

    CAS  Google Scholar 

  63. Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Long chain branching polylactide: structures and properties. Polymer 51(22):5186–5197

    CAS  Google Scholar 

  64. Palade L-I, Lehermeier HJ, Dorgan JR (2001) Melt rheology of high L-content poly (lactic acid). Macromolecules 34(5):1384–1390

    CAS  Google Scholar 

  65. **e F, Zhang B, Wang DK (2017) Chapter 7—starch thermal processing: technologies at laboratory and semi-industrial scales. In: Villar MA, Barbosa SE, García MA, Castillo LA, López OV (eds) Starch-based materials in food packaging. Academic Press, Cambridge, pp 187–227

    Google Scholar 

  66. Obi BE (2018) 6—foaming processes. In: Obi BE (ed) Polymeric foams structure-property-performance. William Andrew Publishing, Oxford, pp 131–188

    Google Scholar 

  67. Narimissa E, Gupta RK, Kao N, Nguyen DA, Bhattacharya SN (2014) Extensional rheological investigation of biodegradable polylactide-nanographite platelet composites via constitutive equation modeling. Macromol Mater Eng 299(7):851–868

    CAS  Google Scholar 

  68. Singh S, Ghosh AK, Maiti SN, Raha S, Gupta RK, Bhattacharya S (2012) Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polym Eng Sci 52(1):225–232

    CAS  Google Scholar 

  69. Kagarise C, Miyazono K, Mahboob M, Koelling KW, Bechtel SE (2011) A constitutive model for characterization of shear and extensional rheology and flow induced orientation of carbon nanofiber/polystyrene melt composites. J Rheol 55(4):781–807

    CAS  Google Scholar 

  70. Chhabra RP, Richardson JF (2008) Chapter 1—non-newtonian fluid behaviour. In: Chhabra RP, Richardson JF (eds) Non-newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford, pp 1–55

    Google Scholar 

  71. Chellamuthu M, Rothstein JP (2008) Distinguishing between linear and branched wormlike micelle solutions using extensional rheology measurements. J Rheol 52(3):865–884

    CAS  Google Scholar 

Download references

Acknowledgements

The technical support from Santiago Duarte-Aranda (SEM) and Wilberth Herrera Kao (TGA and DSC) is highly appreciated. This study was partially financed by the project FOMIX-Yucatan CICY YUC-2014-C17-247046.

Funding

This study was partially financed by the project FOMIX Yucatan CICY YUC-2014-C17-247046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Cecilia Pech-Cohuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2037 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uribe-Calderón, J., Rodrigue, D., Hirschberg, V. et al. Influence of surface-modified cellulose nanocrystal on the rheological, thermal and mechanical properties of PLA nanocomposites. Polym. Bull. 80, 10193–10213 (2023). https://doi.org/10.1007/s00289-022-04556-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04556-w

Keywords

Navigation