Log in

Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present research work includes non-isothermal crystallization kinetics of poly(ethylene terephthalate) (PET)–titanium dioxide (TiO2) nanocomposites as well as structural and chemical properties of these nanocomposites. The average grain size of chemically synthesized TiO2 nanoparticles has been calculated 19.31 nm by TEM and XRD. The morphology and structural analysis of PET–TiO2 nanocomposites, prepared via solution casting method, has been investigated using SEM and XRD, respectively. The nature of chemical bonds has been discussed on the basis of FTIR spectra. The effect of TiO2 nanoparticles and cooling rates on non-isothermal crystallization kinetics of PET was examined by differential scanning calorimetry at various heating and cooling rates. It has been observed that TiO2 nanoparticles accelerate the heterogeneous nucleation in PET matrix. The crystallization kinetics could be explained through Avrami–Ozawa combined theory. TiO2 nanoparticles cause to make molecular chains of PET easier to crystallize and accelerate the crystallization rates during non-isothermal crystallization process; this conclusion has also been verified by Kissinger model for crystallization activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Saujanya C, Radhakrishnan S (2000) Structure development and crystallization behavior of PP/nanoparticulate composite. Polymer 42:6723–6731

    Article  Google Scholar 

  2. Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:586–595

    Article  CAS  Google Scholar 

  3. Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int 49:1158–1163

    Article  CAS  Google Scholar 

  4. Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and application of polymer clay nanocomposites. Thermochim Acta 442:74–77

    Article  CAS  Google Scholar 

  5. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Article  CAS  Google Scholar 

  6. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622

    Article  CAS  Google Scholar 

  7. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  8. Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers––a review. Compos Sci Technol 66:1102–1111

    Article  CAS  Google Scholar 

  9. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Tech 18:84–95

    Article  CAS  Google Scholar 

  10. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Article  Google Scholar 

  11. Fried JR (2009) Polymer science and technology, 2nd edn. PHI, New Delhi

    Google Scholar 

  12. Todorov LV (2010) Multiscale morphology evoluation of PET and its nanocomposites under deformation. Ph.D. thesis, Unversidade do Minho Escola de Engenharia

  13. Todorov LV, Viana JC (2007) Characterization of PET nanocomposites produced by different melt-based production methods. J Appl Polym Sci 106:1659–1669

    Article  CAS  Google Scholar 

  14. Viana JC, Alves NM, Mano JF (2004) Morphology and mechanical properties of injection molded poly (ethylene terephthalate). Polym Eng Sci 44:2174–2184

    Article  CAS  Google Scholar 

  15. Borse PH, Kankate LS, Dassenoy F, Vogel W, Urban J, Kulkarni SK (2002) Synthesis and investigations of rutile phase TiO2 nanoparticles. J Mater Sci Mater Electron 13:553–559

    Article  CAS  Google Scholar 

  16. Rodgers J, Delhom C, Hinchliffe D, Kim HJ, Cui X (2013) A rapid measurement for cotton breeders of maturity and fineness from develo** and mature fibers. Text Res J 83(14):1439–1451

    Google Scholar 

  17. Awasthi K, Kulshrestha V, Avasthi DK, Vijay YK (2010) Optical, chemical and structural modification of oxygen irradiated PET. Radiat Meas 45:850–855

    Article  CAS  Google Scholar 

  18. Zhu X, Wang B, Chen S, Wang C, Zhang Y, Wang H (2008) Synthesis and non-isothermal crystallization behavior of PET/surfacetreated TiO2 nanocomposites. J Macromol Sci R Part B Phys 47:1117–1129

    Article  CAS  Google Scholar 

  19. Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1(4):245–251

    Article  CAS  Google Scholar 

  20. Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2, 6-naphthalate). Polymer 44:5625–5634

    Article  CAS  Google Scholar 

  21. Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly (ether ether ketone). Mater Chem Phys 99:258–268

    Article  CAS  Google Scholar 

  22. Qiu S, Kalita S (2006) Synthesis, processing and characterization of nanocrystalline titanium dioxide. J Mater Sci Eng A 327:435–436

    Google Scholar 

  23. Callister WD, Rethwisch DG (2009) Materials science and engineering. John Wiley and Sons publication, USA

    Google Scholar 

  24. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158

    Article  CAS  Google Scholar 

  25. Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24(6):917–950

    Article  Google Scholar 

  26. Avrami M (1939) Kinetics of phase change, I. General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  27. Avrami M (1941) Kinetics of phase change III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  28. Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate). Polymer 42(23):9423–9431

    Article  CAS  Google Scholar 

  29. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575

    Article  CAS  Google Scholar 

  30. Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132

    Article  CAS  Google Scholar 

  31. Ramesh V, Mohanty S, Panda BP, Nayak SK (2013) Nucleation effect of surface treated TiO2 n poly (trimethylene terephthalate) (PTT) nanocomposites. J Appl Polym Sci 127(3):1909–1920

    Article  CAS  Google Scholar 

  32. Xu W, Ge M, He P (2002) Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 40:408–414

    Article  CAS  Google Scholar 

  33. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to DST, Govt. of India. DST has granted sophisticated research facilities to Banasthali Vidyapith under its CURIE scheme. One of author (KA) is thankful to DST-New Delhi for funding under INSPIRE faculty award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhav K. Saraswat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, H., Awasthi, K. & Saraswat, V.K. Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties. Polym. Bull. 71, 1539–1555 (2014). https://doi.org/10.1007/s00289-014-1140-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1140-3

Keywords

Navigation