Log in

Wave speed and critical patch size for integro-difference equations with a strong Allee effect

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Simplified conditions are given for the existence and positivity of wave speed for an integro-difference equation with a strong Allee effect and an unbounded habitat. The results are used to obtain the existence of a critical patch size for an equation with a bounded habitat. It is shown that if the wave speed is positive there exists a critical patch size such that for a habitat size above the critical patch size solutions can persist in space, and if the wave speed is negative solutions always approach zero. An analytical integral formula is developed to determine the critical patch size when the Laplace dispersal kernel is used, and this formula shows existence of multiple equilibrium solutions. Numerical simulations are provided to demonstrate connections among the wave speed, critical patch size, and Allee threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allee WC, Emerson AE, Park O, Park T, Schmidt KP (1949) Principles of animal ecology. W. B Saunders, Philadelphia

    Google Scholar 

  • Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, London

    Book  Google Scholar 

  • Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc Natl Acad Sci USA 101:13804–13807

    Article  Google Scholar 

  • Hardin DP, Takac P, Webb GF (1988) Asymptotic properties of a continuous-space discrete-time population model in a random environment. Bull Math Biol 26:361–374

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin DP, Takac P, Webb GF (1988) Dispersion population models discrete in time and space. J Math Biol 28:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings A, Higgins K (1994) Persistence of transients in spatially structured ecological models. Science 263:1133–1136

    Article  Google Scholar 

  • Hsu S-B, Zhao X-Q (2008) Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J Math Anal 40:776–789

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M (1992) Discrete-time traveling waves: ecological examples. J Math Biol 30:413–436

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80:109–136

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M, Lewis MA, van der Driessche P (1996) Dispersal data and the spread of invading species. Ecology 77:2027–2042

    Article  Google Scholar 

  • Lewis ML, Marculis NG, Shen W (2018) Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics. J Math Biol 77:1649–1687

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Lewis MA, Weinberger HF (2009) Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol 58:323–338

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Bewick S, Barnard MR, Fagan WF (2016) Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat. Bull Math Biol 78:1337–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Wu J (2020) Traveling waves in integro-difference equations with a shifting habitat. J Diff Eqs 268:4059–4078

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Zhang M, Coffman B (2020) Can a barrier zone stop invasion of a population? J Math Biol 81:1193–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Ludwig D, Aronson DG, Weinberger HF (1979) Spatial patterning of the spruce budworm. J Math Biol 8:217–258

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R (1982) A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data. SIAM J Math Anal 13:913–937

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R (1982) A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support. SIAM J Math Anal 13:938–953

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R (1983) Existence and stability of traveling wave solutions of a nonlinear integral operator. J Math Biol 16:199–220

    Article  MathSciNet  MATH  Google Scholar 

  • Lustig A, Worner SP, Pitt JPW, Doscher C, Stouffer DB, Senay SD (2017) A modeling framework for the establishment and spread of invasive species in heterogeneous environments. Ecol Evol 7:8338–8348

    Article  Google Scholar 

  • Lutscher F (2019) Integrodifference equations in spatial ecology. Springer, Berlin

    Book  MATH  Google Scholar 

  • McGahan I, Powell J, Spencer E (2021) 28 models later: model competition and the zombie apocalypse. Bull Math Biol 83:22

    Article  MathSciNet  MATH  Google Scholar 

  • Parker IM (2004) Mating patterns and rates of biological invasion. Proc Natl Acad Sci USA 101:13695–13696

    Article  Google Scholar 

  • Pouchol C, Trélat E, Zuazua E (2019) Phase portrait control for 1D monostable bistable reaction-diffusion equations. Nonlinearity 32:884–909

    Article  MathSciNet  MATH  Google Scholar 

  • Slatkin M (1973) Gene flow and selection in a cline. Genetics 75:733–756

    Article  MathSciNet  Google Scholar 

  • Sullivan LL, Li B, Miller TEX, Neubert MG, Shaw AK (2017) Density dependence in demography and dispersal generates fluctuating invasion speeds. Proc Natl Acad Sci USA 114:5053–5058

    Article  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908

    Article  Google Scholar 

  • Veit RR, Lewis MA (1996) Dispersal, population growth and the Allee effect: dynamics of the House Finch invasion of eastern North America. Am Nat 148:255–274

    Article  Google Scholar 

  • Wang MH, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44:150–168

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (1978) Asymptotic behavior of a model in population genetics. In: Chadam JM (ed) Nonlinear partial differential equations and applications. Lecture notes in mathematics, vol 648. Springer, Berlin, pp 47–96

  • Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13:353–396

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF, Zhao XQ (2010) An extension of the formula for spreading speeds. Math Biosci Eng 7:187–194

    Article  MathSciNet  MATH  Google Scholar 

  • Wheeden RL, Zygmund A (1977) Measure and integral: an introduction to real analysis. Marcel Dekker, Inc., New York

    Book  MATH  Google Scholar 

  • Zhou Y, Kot M (2011) Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol 4:13–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B. Li was partially supported by the National Science Foundation under Grant DMS-1951482.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Otto, G. Wave speed and critical patch size for integro-difference equations with a strong Allee effect. J. Math. Biol. 85, 59 (2022). https://doi.org/10.1007/s00285-022-01814-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01814-3

Keywords

Mathematics Subject Classification

Navigation