Log in

Invasion probabilities, hitting times, and some fluctuation theory for the stochastic logistic process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider excursions for a class of stochastic processes describing a population of discrete individuals experiencing density-limited growth, such that the population has a finite carrying capacity and behaves qualitatively like the classical logistic model Verhulst (Corresp Math Phys 10:113–121, 1838) when the carrying capacity is large. Being discrete and stochastic, however, our population nonetheless goes extinct in finite time. We present results concerning the maximum of the population prior to extinction in the large population limit, from which we obtain establishment probabilities and upper bounds for the process, as well as estimates for the waiting time to establishment and extinction. As a consequence, we show that conditional upon establishment, the stochastic logistic process will with high probability greatly exceed carrying capacity an arbitrary number of times prior to extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In Kolmogorov (1936), Kolmogorov actually makes the weaker assumption that the net per-capita growth rate \(\lambda (x) - \mu (x)\) is decreasing; we make this stronger assumption to ensure that \(f(x) = \ln {\frac{\mu (x)}{\lambda (x)}}\) is increasing, which is crucial to our results. One can easily construct examples where the former holds, but not the latter, e.g., \(\lambda (x) = b + e^{x-\kappa }\), \(\mu (x) = d(1+x) + e^{x-\kappa }\), for \(b> d > 0\) and \(\kappa = \frac{b}{d} - 1\).

  2. While it is appealing to observe that

    $$\begin{aligned} \frac{1}{n} \sum _{k = a_{n}}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \psi \left( \frac{k}{n}\right) } \end{aligned}$$

    is essentially the Riemann sum for

    $$\begin{aligned} \int _{\alpha }^{\beta } g(x) e^{n \psi (x)}\, dx, \end{aligned}$$

    and then invoke the continuous form of Laplace’s method, Proposition 1 shows that whilst the discrete and continuous results are identical for an interior maximum, they do not agree when \(\psi \) has its maximum at one of the endpoints, thus invalidating this “proof”.

References

  • Aldous DJ, Fill J (2002) Reversible Markov chains and random walks on graphs

  • Andersson H, Djehiche B (1998) A threshold limit theorem for the stochastic logistic epidemic. J Appl Prob 35:662–670

    Article  MathSciNet  Google Scholar 

  • Barbour AD (1976) Quasi-stationary distributions in Markov population processes. Adv Appl Prob 8(2):296–314

    Article  MathSciNet  Google Scholar 

  • Bovier A, Eckhoff M, Gayrard V, Klein M (2004) Metastability in reversible diffusion processes I: sharp asymptotics for capacities and exit times. J Eur Math Soc 6(4):399–424

    Article  MathSciNet  Google Scholar 

  • Chalub FACC, Souza MO (2016) Fixation in large populations: a continuous view of a discrete problem. J Math Biol 72(1–2):283–330

    Article  MathSciNet  Google Scholar 

  • Champagnat N (2006) A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch Process Appl 116(8):1127–1160

    Article  MathSciNet  Google Scholar 

  • Desai MM, Fisher DS (2007) Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics 176(3):1759–1798

    Article  Google Scholar 

  • Doob J (1957) Conditional brownian motion and the boundary limits of harmonic functions. Bulletin de la Société Mathématique de France 85:431–458

    Article  MathSciNet  Google Scholar 

  • Durrett R (2009) Probability models for DNA sequence evolution, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Dushoff J (2000) Carrying capacity and demographic stochasticity: scaling behavior of the stochastic logistic model. Theor Popul Biol 57(1):59–65

    Article  Google Scholar 

  • Iwasa Y, Michor F, Nowak MA (2004) Evolutionary dynamics of invasion and escape. J Theor Biol 226(2):205–214

    Article  MathSciNet  Google Scholar 

  • Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Katznelson Y (1976) An introduction to harmonic analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  • Kolmogorov AN (1936) Sulla teoria di Volterra della lotta per l’esistenza. Giorn Instituto Ital Attuari 7:74–80

    MATH  Google Scholar 

  • Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob 7(1):49–58

    Article  MathSciNet  Google Scholar 

  • Kurtz TG (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Prob 8(2):344–356

    Article  MathSciNet  Google Scholar 

  • Newman TJ, Ferdy JB, Quince C (2004) Extinction times and moment closure in the stochastic logistic process. Theor Popul Biol 65:115–126

    Article  Google Scholar 

  • Parsons TL (2012) Asymptotic analysis of some stochastic models from population dynamics and population genetics. Ph.D. thesis, University of Toronto

  • Taylor BL, Chivers SJ, Larese J, Perrin WF (2007) Generation length and percent mature estimates for IUCN assessments of cetaceans. Technical report, National Marine Fisheries Service, Southwest Fisheries Science Center

  • Verhulst PF (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique 10:113–121

    Google Scholar 

  • Weissman DB, Desai MM, Fisher DS, Feldman MW (2009) The rate at which asexual populations cross fitness valleys. Theor Popul Biol 75(4):286–300

    Article  Google Scholar 

Download references

Acknowledgements

I thank François Bienvenu, Amaury Lambert, Peter Ralph, Tim Rogers, Sebastian Schreiber, and two anonymous reviewers for comments that led to substantial improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd L. Parsons.

Appendices

Appendices

Some useful lemmas

For the sake of completeness, we include some simple and well-known lemmas that we have used in the main text. The proofs are elementary and are thus omitted.

Lemma A.1

  1. (i)

    Let f be an non-decreasing function. Then,

    $$\begin{aligned} 0 \le \frac{1}{n} \sum _{j=a+1}^{b} f\left( \frac{j}{n}\right) - \int _{\frac{a}{n}}^{\frac{b}{n}} f(x)\, dx \le \frac{1}{n} \left( f\left( \frac{b}{n}\right) - f\left( \frac{a}{n}\right) \right) \end{aligned}$$

    and

    $$\begin{aligned} 0 \le \int _{\frac{a}{n}}^{\frac{b}{n}} f(x)\, dx - \frac{1}{n} \sum _{j=a}^{b-1} f\left( \frac{j}{n}\right) \le \frac{1}{n} \left( f\left( \frac{b}{n}\right) - f\left( \frac{a}{n}\right) \right) . \end{aligned}$$
  2. (ii)

    If f is differentiable and \(|f'(x)|\) is bounded by M on \(\left[ \frac{a}{n},\frac{b}{n}\right] \), then

    $$\begin{aligned} \left| \int _{\frac{a}{n}}^{\frac{b}{n}} f(x)\, dx - \frac{1}{n} \sum _{j=a}^{b-1} f\left( \frac{j}{n}\right) \right| < \frac{M(b-a)}{2 n^{2}}. \end{aligned}$$
  3. (iii)

    Further, if f is twice differentiable and \(|f''(x)|\) is bounded by M on \(\left[ \frac{a}{n},\frac{b}{n}\right] \), then

    $$\begin{aligned} \left| \int _{\frac{a}{n}}^{\frac{b}{n}} f(x)\, dx - \frac{1}{n} \sum _{j=a}^{b-1} f\left( \frac{j}{n}\right) -\frac{1}{2n}\left( f\left( \frac{b}{n}\right) - f\left( \frac{a}{n}\right) \right) \right| < \frac{M(b-a)}{4 n^{3}}. \end{aligned}$$

Lemma A.2

(Dominated convergence theorem for series) Suppose that \(a_{m,n}\) and \(b_{m}\) are sequences such that

  1. (i)

    \(a_{m,n} \rightarrow a_{m}\) as \(n \rightarrow \infty \),

  2. (ii)

    \(|a_{m,n}| \le b_{m}\) for all n, and

  3. (iii)

    \(\sum _{m=0}^{\infty } b_{m} < \infty \).

Then,

$$\begin{aligned} \lim _{n \rightarrow \infty } \sum _{m = 0}^{\infty } a_{m,n} = \sum _{m = 0}^{\infty } a_{m}, \end{aligned}$$

i.e., the sums on the left and right are convergent and one can interchange sum and limit.

Lemma A.3

Suppose we have sequences \(a_{n,k}, b_{n,k} \ge 0\) for all nk, such that

$$\begin{aligned} \lim _{k \rightarrow \infty } \sup _{n} \frac{a_{n,k}}{b_{n,k}} = 1, \end{aligned}$$

and that

$$\begin{aligned} \sum _{k = 1}^{\infty } b_{n,k} = \infty . \end{aligned}$$

Then,

$$\begin{aligned} \lim _{N \rightarrow \infty } \frac{\sum _{k = 1}^{N} a_{n,k}}{\sum _{k = 1}^{N} b_{n,k}} = 1. \end{aligned}$$

Proofs

1.1 Proofs for Sect. 2.2

Proof of Proposition 1

We will prove the result for \(\gamma = \alpha \) and \(\gamma \in (\alpha ,\beta )\). The other cases follow similarly.

Fix \(\varepsilon > 0\) such that \(\psi '(\alpha ) + \varepsilon < 0\). Using Taylor’s theorem, we may write

$$\begin{aligned} \psi (x) = \psi (y) + \psi '(y)(x-y) + R(x,y)(x-y), \end{aligned}$$

where \(R(x,y) \rightarrow 0\) as \(|x-y| \rightarrow 0\). Fix \(\delta > 0\) such that

$$\begin{aligned} |\psi '(x) - \psi '(\alpha )| < \frac{\varepsilon }{2} \end{aligned}$$

for all x such that \(|x - \alpha | < \delta \) and

$$\begin{aligned} |R(x,\alpha )|< \frac{\varepsilon }{2} \quad \text {and} \quad |g(x) - g(\alpha )| < \frac{\varepsilon }{2} \end{aligned}$$

for all x such that \(x - \alpha < 3\delta \), and choose \(\eta > 0\) such that \(\psi (x) < \psi (\alpha ) - \eta \) for all x such that \(x - \alpha \ge \delta \). Fix M and m such that \(|g(x)| < M\) and \(|h(x)| < m\) for all \(x \in [\alpha -\delta ,\beta +\delta ]\) and all n. Since \(\frac{a_{n}}{n} \rightarrow \alpha \) and \(\frac{b_{n}}{n} \rightarrow \beta \), without loss of generality, we may assume that \(|\frac{a_{n}}{n} - \alpha | < \delta \), \(|\frac{b_{n}}{n} - \beta | < \delta \) and \(|\epsilon _{n}| < \varepsilon \) for all n.

Then,

$$\begin{aligned}&\sum _{k = a_{n}}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \psi \left( \frac{k}{n}\right) }\\&\quad = e^{n \psi \left( \frac{a_{n}}{n}\right) } \sum _{k = a_{n}}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{a_{n}}{n}\right) \right) }\\&\quad = e^{n \psi \left( \frac{a_{n}}{n}\right) } \left( \sum _{k = a_{n}}^{a_{n} + \lceil 2n \delta \rceil -1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{a_{n}}{n}\right) \right) }\right. \\&\qquad + \left. \sum _{k = a_{n} + \lceil 2n \delta \rceil }^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{a_{n}}{n}\right) \right) } \right) , \end{aligned}$$

and, provided \(k \ge a_{n} + \lceil 2n \delta \rceil \), then \(\frac{k}{n} \ge \alpha + \delta \), and

$$\begin{aligned} \left| \sum _{k = a_{n} + \lceil 2n \delta \rceil }^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{a_{n}}{n}\right) \right) } \right| \le (b_{n} - a_{n}) M(1+\varepsilon ) e^{-n \eta } \rightarrow 0 \end{aligned}$$

as \(n \rightarrow \infty \), whereas if \(k < a_{n} + \lceil 2n \delta \rceil \), then \(\frac{k}{n} < \alpha + 3\delta \), and

$$\begin{aligned}&(1-\varepsilon )\left( g\left( \frac{a_{n}}{n}\right) - \varepsilon \right) \sum _{k = a_{n}}^{a_{n} + \lceil 2n \delta \rceil -1} e^{n (\psi '\left( \frac{a_{n}}{n}\right) -\frac{\varepsilon }{2})\left( \frac{k}{n}-\frac{a_{n}}{n}\right) }\\&\quad \le \sum _{k = a_{n}}^{a_{n} + \lceil 2n \delta \rceil -1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{a_{n}}{n}\right) \right) }\\&\quad \le (1+\varepsilon )\left( g\left( \frac{a_{n}}{n}\right) + \varepsilon \right) \sum _{k = a_{n}}^{a_{n} + \lceil 2n \delta \rceil -1} e^{n(\psi '\left( \frac{a_{n}}{n}\right) +\frac{\varepsilon }{2})\left( \frac{k}{n}-\frac{a_{n}}{n}\right) }, \end{aligned}$$

and

$$\begin{aligned}&\sum _{k = a_{n}}^{a_{n} + \lceil 2n \delta \rceil -1} e^{n (\psi '\left( \frac{a_{n}}{n}\right) -\varepsilon )\left( \frac{k}{n}-\frac{a_{n}}{n}\right) } = \sum _{k = 0}^{\lceil 2n \delta \rceil -1} e^{(\psi '\left( \frac{a_{n}}{n}\right) -\varepsilon )k} = \frac{e^{(\psi '\left( \frac{a_{n}}{n}\right) -\varepsilon )\lceil 2n \delta \rceil }-1}{e^{(\psi '\left( \frac{a_{n}}{n}\right) -\varepsilon )}-1}. \end{aligned}$$

We now observe that \(|\psi '\left( \frac{a_{n}}{n}\right) - \psi '(\alpha )| < \frac{\varepsilon }{2}\), so \(\psi '\left( \frac{a_{n}}{n}\right) +\frac{\varepsilon }{2}< \psi '(\alpha ) + \varepsilon < 0\) and

$$\begin{aligned} e^{(\psi '\left( \frac{a_{n}}{n}\right) + \frac{\varepsilon }{2})\lceil 2n \delta \rceil -1} \rightarrow 0 \end{aligned}$$

as \(n \rightarrow \infty \). Proceeding similarly we obtain a lower bound. Since \(\varepsilon > 0\) can be chosen arbitrarily small, the result follows.

To prove the case when \(\psi '(\gamma ) = 0\), we proceed as previously and write

$$\begin{aligned} \psi (x) = \psi (y) + \psi '(y)\left( x-y\right) + \left( \frac{1}{2}\psi ''(y)+ R(x,y)\right) (x-y)^{2} \end{aligned}$$

where \(R(x,y) \rightarrow 0\) as \(|x-y| \rightarrow 0\). Fix \(\varepsilon > 0\) sufficiently small that \(\psi ''(\gamma ) + \varepsilon <0\), and choose \(\delta > 0\) sufficiently small that \(|R(x,y)| < \varepsilon \) and \(|g(x)-g(y)| < \varepsilon \) for all \(|x-y| < 2\delta \). As before, suppose that \(|g(x)| < M\) and \(|h(x)| < m\) for \(x \in [\alpha -\delta ,\beta +\delta ]\), that \(\psi (\gamma ) > \psi (x) + \eta \) for \(|\gamma - x| > \delta \) and that \(\epsilon _{n} < \frac{\varepsilon }{2m}\) for all n. Then, setting \(c_{n} = \lfloor \gamma n \rfloor \) if \(\gamma \in (\alpha ,\beta )\), \(c_{n} = a_{n}\) if \(\gamma = \alpha \), and \(c_{n} = b_{n}\) if \(\gamma = \beta \),

$$\begin{aligned}&\sum _{k = a_{n}}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \psi \left( \frac{k}{n}\right) }\\&\quad = e^{n \psi \left( \frac{c_{n}}{n}\right) } \sum _{k = a_{n}}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{c_{n}}{n}\right) \right) }\\&\quad = e^{n \psi \left( \frac{c_{n}}{n}\right) } \left( \sum _{k = a_{n}}^{c_{n} - \lceil n \delta \rceil -1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{c_{n}}{n}\right) \right) }\right. \\&\qquad +\left. \sum _{k = c_{n} - \lceil n \delta \rceil } ^{c_{n} + \lceil n \delta \rceil } (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{c_{n}}{n}\right) \right) }\right. \\&\qquad \left. + \sum _{k = c_{n} + \lceil n \delta \rceil +1}^{b_{n}-1} (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{c_{n}}{n}\right) \right) } \right) , \end{aligned}$$

where, as before, the first and last sums are bounded above by \((b_{n} - a_{n}) (1+\varepsilon )M e^{-n \eta }\) and

$$\begin{aligned}&(1-\varepsilon )\left( g\left( \frac{c_{n}}{n}\right) - \varepsilon \right) \sum _{k = c_{n}-\lceil n \delta \rceil } ^{c_{n} + \lceil n \delta \rceil } e^{n\left( \psi '\left( \frac{c_{n}}{n}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) + \left( \frac{1}{2}\psi ''\left( \frac{c_{n}}{n}\right) -\frac{\varepsilon }{2}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) ^{2}\right) }\\&\quad \le \sum _{k = c_{n}-\lceil n \delta \rceil } ^{c_{n} + \lceil n \delta \rceil } (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \left( \psi \left( \frac{k}{n}\right) -\psi \left( \frac{c_{n}}{n}\right) \right) }\\&\quad \le (1+\varepsilon )\left( g\left( \frac{c_{n}}{n}\right) + \varepsilon \right) \sum _{k = c_{n}-\lceil n \delta \rceil }^{c_{n} + \lceil n \delta \rceil } e^{n\left( \psi '\left( \frac{c_{n}}{n}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) + \left( \frac{1}{2}\psi ''\left( \frac{c_{n}}{n}\right) +\frac{\varepsilon }{2}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) ^{2}\right) }, \end{aligned}$$

As previously, we will show that for n sufficiently large, the upper sum has an upper bound arbitrarily close to \(g(\gamma ) e^{n \psi (\gamma )}\sqrt{\frac{2n\pi }{|\psi ''(\gamma )|}}\). The lower sum is treated identically. Proceeding, we have

$$\begin{aligned}&\sum _{k = c_{n}-\lceil 2n \delta \rceil }^{c_{n} + \lceil 2n \delta \rceil } e^{n\left( \psi '\left( \frac{c_{n}}{n}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) + \left( \frac{1}{2}\psi ''\left( \frac{c_{n}}{n}\right) +\frac{\varepsilon }{2}\right) \left( \frac{k}{n}-\frac{c_{n}}{n}\right) ^{2}\right) }\\&\quad = \sum _{k = -\lceil 2n \delta \rceil }^{\lceil 2n \delta \rceil } e^{\psi '\left( \frac{c_{n}}{n}\right) k + \frac{\psi ''\left( \frac{c_{n}}{n}\right) +\frac{\varepsilon }{2}}{2n} k^{2}} = e^{z_{n} u_{n}^{2}} \sum _{k = -\lceil 2n \delta \rceil }^{\lceil 2n \delta \rceil } e^{-z_{n} \left( k-u_{n}\right) ^{2}}, \end{aligned}$$

where \(z_{n} = \left| \frac{\psi ''\left( \frac{c_{n}}{n}\right) +\frac{\varepsilon }{2}}{2n}\right| \) and \(u_{n} = \frac{\psi '\left( \frac{c_{n}}{n}\right) }{2 z_{n}}\).

We analyze the latter sum via Poisson’s summation formula (Katznelson 1976), which tells us that for an integrable function f with Fourier transform \(\hat{f}\),

$$\begin{aligned} \sum _{k=-\infty }^{\infty } f(k) = \sum _{k=-\infty }^{\infty } \hat{f}(k). \end{aligned}$$

Applying this with \(f(x) = e^{-z_{n} (x-u_{n})^{2}}\) gives

$$\begin{aligned} \sum _{k=-\infty }^{\infty } e^{-z_{n} (k-u_{n})^{2}} = \sum _{k=-\infty }^{\infty } \sqrt{\frac{\pi }{z_{n}}} e^{-i u_{n} k + \frac{k^{2}}{4z_{n}}}. \end{aligned}$$

Now, for \(k \ne 0\),

$$\begin{aligned} \lim _{n \rightarrow \infty } \left| \sqrt{\frac{\pi }{z_{n}}} e^{-i u_{n} k + \frac{k^{2}}{4z_{n}}}\right| = 0, \end{aligned}$$

whereas, since \(\psi \) is twice continuously differentiable (and thus \(\psi '\) is Lipschitz), there exists a constant L such that

$$\begin{aligned} |z_{n} u_{n}^{2}| = \frac{4 n |\psi '\left( \frac{c_{n}}{n}\right) - \psi '(\gamma )|}{\left| \psi ''\left( \frac{c_{n}}{n}\right) +\frac{\varepsilon }{2}\right| } \le 4L n \left| \frac{c_{n}}{n} - \gamma \right| ^{2}, \end{aligned}$$

which thus vanishes as \(n \rightarrow \infty \), provided \(\left| \frac{c_{n}}{n} - \gamma \right| \ll \frac{1}{\sqrt{n}}\).

Since \(\varepsilon \) and \(\delta \) may be chosen arbitrarily small, the result follows provided

$$\begin{aligned} \sum _{k = - \lfloor \delta n \rfloor }^{\lfloor \delta n \rfloor } e^{-z_{n} (k-u_{n})^{2}} \sim \sum _{k=-\infty }^{\infty } e^{-z_{n} (k-u_{n})^{2}}. \end{aligned}$$

To see this, we first observe that

$$\begin{aligned} 0\le & {} \sum _{k=\lfloor \delta n \rfloor +1}^{\infty } e^{-z_{n} (k-u_{n})^{2}} = \sum _{k=1}^{\infty } e^{-z_{n} \left( \lfloor \delta n \rfloor ^{2} + (k-u_{n})^{2} + 2\lfloor \delta n \rfloor (k-u_{n})\right) }\\< & {} e^{-z_{n} \lfloor \delta n \rfloor ^{2}+2 z_{n} u_{n}\lfloor \delta n \rfloor } \sum _{k=1}^{\infty } e^{-z_{n} (k-u_{n})^{2}} \end{aligned}$$

and, similarly,

$$\begin{aligned} 0 \le \sum _{k=-\infty }^{-\lfloor \delta n \rfloor -1} e^{-z_{n} (k-u_{n})^{2}} < e^{-z_{n} \lfloor \delta n \rfloor ^{2}-2 z_{n} u_{n}\lfloor \delta n \rfloor } \sum _{k=-\infty }^{-1} e^{-z_{n} (k-u_{n})^{2}} \end{aligned}$$

Thus,

$$\begin{aligned} 0\le & {} \sum _{k=-\infty }^{-\lfloor \delta n \rfloor -1} e^{-z_{n} (k-u_{n})^{2}} + \sum _{k=\lfloor \delta n \rfloor +1}^{\infty } e^{-z_{n} (k-u_{n})^{2}} \\< & {} e^{-z_{n} \lfloor \delta n \rfloor ^{2} + 2 z_{n} |u_{n}|\lfloor \delta n \rfloor } \left( \sum _{k=-\infty }^{\infty } e^{-z_{n} (k-u_{n})^{2}} -1 \right) \end{aligned}$$

so that

$$\begin{aligned} 0 \le 1 - \frac{\sum _{k = - \lfloor \delta n \rfloor }^{\lfloor \delta n \rfloor } e^{-z_{n} (k-u_{n})^{2}}}{\sum _{k=-\infty }^{\infty } e^{-z_{n} (k-u_{n})^{2}}} < e^{-z_{n} \lfloor \delta n \rfloor ^{2} + 2 z_{n} |u_{n}|\lfloor \delta n \rfloor } \left( 1 - \frac{1}{\sum _{k=-\infty }^{\infty } e^{-z_{n} (k-u_{n})^{2}}}\right) , \end{aligned}$$

and, since \(z_{n} n^{2} \ll n\), whereas \(z_{n} |u_{n}| n \ll n \left| \frac{c_{n}}{n} - \gamma \right| = o(\sqrt{n})\), the right hand side tends to 0 as \(n \rightarrow \infty \). \(\square \)

Remark 4

We note that provided \(\alpha < \beta \) (resp. \(\alpha< \gamma < \beta \)) and the function g is bounded on some fixed interval containing \([\alpha ,\beta ]\), then the error in (i) and (ii) is independent of \(b_{n}\) and \(\beta \) or \(a_{n}\) and \(\alpha \) respectively. Similarly, the bound in (iii) is independent of either endpoint.

Proof of Corollary 1

Let \(\psi (x) = V(x)\), \(g(x) = \sqrt{\frac{\mu (x)}{\lambda (x)}\frac{\lambda (0)}{\mu (0)}}\) and

$$\begin{aligned} \epsilon _{n}(k) = e^{n V^{(n)}(k) - n V\left( \frac{k}{n}\right) - \frac{1}{2}\left( f\left( \frac{k}{n}\right) -f(0)\right) }-1. \end{aligned}$$

Then g(x) is continuous,

$$\begin{aligned} e^{n V^{(n)}(k)} = (1+\epsilon _{n}(k)) g\left( \frac{k}{n}\right) e^{n \psi \left( \frac{k}{n}\right) }, \end{aligned}$$

and, from Lemma A.1, for any positive integers \(a < b\),

$$\begin{aligned} |\epsilon _{n}(k)| < \frac{\sup _{x \in \left[ \frac{a}{n},\frac{b}{n}\right] } |f''(x)| (b-a)}{n^{3}}, \end{aligned}$$
(B.1)

which we note is uniform in k. The first two assertions then follow from the corresponding parts of the Proposition.

The third statement follows immediately upon observing that

$$\begin{aligned} e^{n V'\left( \frac{a_{n}}{n}\right) } \sim e^{V'(0)a_{n}} = \left( \frac{\mu (0)}{\lambda (0)}\right) ^{a_{n}}. \end{aligned}$$

\(\square \)

1.2 Proofs for Sect. 2.3

Proof of Proposition 4

Since the process can only change by increments of \(\pm 1\), for any m and j, we have

$$\begin{aligned} \mathbb {P}_{m}\left\{ T^{(n)}_{j}< T^{(n)}_{m+} \right\}&= {\left\{ \begin{array}{ll} \frac{\mu _{m}}{\lambda _{m}+\mu _{m}}\mathbb {P}_{m-1}\left\{ T^{(n)}_{j}< T^{(n)}_{m}\right\} &{} \text {if }j< m,\text { and}\\ \frac{\lambda _{m}}{\lambda _{m}+\mu _{m}}\mathbb {P}_{m+1}\left\{ T^{(n)}_{j}< T^{(n)}_{m}\right\} &{} \text {if }j> m.\\ \end{array}\right. }\\&= {\left\{ \begin{array}{ll} \frac{\mu _{m}}{\lambda _{m}+\mu _{m}} \frac{e^{n V^{(n)}(m-1)}}{\sum _{k=j}^{m-1} e^{n V^{(n)}(k)}} &{} \text {if }j < m,\text { and}\\ \frac{\lambda _{m}}{\lambda _{m}+\mu _{m}} \frac{e^{n V^{(n)}(m)}}{\sum _{k=m}^{m-1} e^{n V^{(n)}(k)}} &{} \text {if }j > m.\\ \end{array}\right. } \end{aligned}$$

Taking \(m = \lfloor \nu n \rfloor \) and \(j = \lfloor \xi n \rfloor \), we are thus left with the task of estimating the sums

$$\begin{aligned} \sum _{k=\lfloor \xi n \rfloor }^{\lfloor \nu n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))} \quad \text {and} \quad \sum _{k=\lfloor \nu n \rfloor }^{\lfloor \xi n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))}, \end{aligned}$$

using Corollary 1, where \(V(x) - V(\nu )\) finds its maximum at either \(\xi \) or \(\nu \) , and this maximum occurs at either the right or left side of the interval of interest, \([\xi ,\nu ]\) or \([\nu ,\xi ]\), depending on where \(\xi \) lies.

Now, given that V(x) is convex with a minimum at \(\kappa \), and \(V(0) = 0\), there exists a unique \(\nu ' \ne \nu \) such that \(V(\nu ') = V(\nu )\). If \(\xi< \nu< \kappa < \nu '\) or \(\xi< \nu '< \kappa < \nu \), the interval is \([\xi ,\nu ]\), the maximum occurs at \(x = \xi \) and

$$\begin{aligned} \sum _{k=\lfloor \xi n \rfloor }^{\lfloor \nu n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))} \sim \frac{\sqrt{\frac{\mu (\xi )}{\lambda (\xi )}\frac{\lambda (\nu )}{\mu (\nu )}} e^{n \left( V\left( \frac{\lfloor \xi \rfloor }{n}\right) -V\left( \frac{\lfloor \nu \rfloor }{n}\right) \right) }}{1-\frac{\mu (\xi )}{\lambda (\xi )}}, \end{aligned}$$

whereas if \(\nu< \kappa< \nu ' < \xi \) or \(\nu '< \kappa< \nu <\xi \), the interval is \([\nu ,\xi ]\), the maximum occurs at \(x = \xi \) and

$$\begin{aligned} \sum _{k=\lfloor \nu n \rfloor }^{\lfloor \xi n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))} \sim \frac{\sqrt{\frac{\mu (\xi )}{\lambda (\xi )}\frac{\lambda (\nu )}{\mu (\nu )}} e^{n \left( V\left( \frac{\lfloor \xi \rfloor }{n}\right) -V\left( \frac{\lfloor \nu \rfloor }{n}\right) \right) }}{1-\frac{\lambda (\xi )}{\mu (\xi )}}. \end{aligned}$$

If if \(\nu< \xi < \nu '\) or \(\nu '< \xi < \nu \), the maximum is at \(x = \nu \) whereas the interval is \([\nu ,\xi ]\) or \([\xi ,\nu ]\) respectively, and one has

$$\begin{aligned} \sum _{k=\lfloor \xi n \rfloor }^{\lfloor \nu n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))} \sim \frac{1}{1-\frac{\mu (\nu )}{\lambda (\nu )}}, \end{aligned}$$

and

$$\begin{aligned} \sum _{k=\lfloor \nu n \rfloor }^{\lfloor \xi n \rfloor -1} e^{n (V^{(n)}(k)-V^{(n)}(\lfloor \nu n \rfloor -1))} \sim \frac{1}{1-\frac{\lambda (\nu )}{\mu (\nu )}}, \end{aligned}$$

respectively. \(\square \)

Proof of Proposition 5

Since the process \(X^{(n)}(t)\) is Markov, for any integer k, each excursion from k is an independent renewal, and thus the number of returns prior to hitting zero has a geometric distribution with success parameter \(\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} \):

$$\begin{aligned} \mathbb {P}_{m}\left\{ N^{(n)}_{k}(T^{(n)}_{0}) = l \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0} \right\} = \mathbb {P}_{k}\left\{ T^{(n)}_{0}< T^{(n)}_{k+}\right\} \left( 1-\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} \right) ^{l-1} \end{aligned}$$

with mean

$$\begin{aligned} \mathbb {E}_{m}\left[ N^{(n)}_{k}(T^{(n)}_{0}) \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0} \right] = \frac{1}{\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} }. \end{aligned}$$

The result follows taking \(k = \lfloor \nu n \rfloor \), and using the asymptotic for \(\mathbb {P}_{\lfloor \nu n \rfloor }\left\{ T^{(n)}_{0} {<} T^{(n)}_{k+}\right\} \) from the previous proposition with \(\xi = 0\), recalling that \(V(0)=0\). \(\square \)

1.3 Proofs for Sect. 2.4

Proof of Proposition 6

The proof presented here is based upon the treatment given for the Moran model in Durrett (2009). We first observe that the hitting time of 0 or \(\lfloor \kappa n\rfloor \) is the sum of the time spent in all in-between states prior to \(T^{(n)}_{\lfloor \kappa n\rfloor } \), so that

$$\begin{aligned} \mathbb {E}_{m}\left[ T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right]= & {} \sum _{k = 1}^{\lfloor \kappa n\rfloor - 1} \mathbb {E}_{m}\left[ S^{(n)}_{k}(T^{(n)}_{\lfloor \kappa n\rfloor } ) \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right] \\= & {} \frac{1}{\lambda _{k}+\mu _{k}} \mathbb {E}_{m}\left[ N^{(n)}_{k}(T^{(n)}_{\lfloor \kappa n\rfloor } ) \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right] , \end{aligned}$$

as \(\frac{1}{\lambda _{k}+\mu _{k}}\) is the expected time spent in state k, which is exponentially distributed with parameter \(\lambda _{k}+\mu _{k}\).

Now, \(N^{(n)}_{m}(T^{(n)}_{\lfloor \kappa n\rfloor } )\) has a modified geometric distribution:

$$\begin{aligned}&\mathbb {P}_{m}\left\{ N^{(n)}_{k}(T^{(n)}_{\lfloor \kappa n\rfloor } ) = l \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right\} \\&\quad = {\left\{ \begin{array}{ll} \mathbb {P}_{m}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0} \right\} &{} \text {if l = 0, and}\\ \begin{aligned} &{}\mathbb {P}_{m}\left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0} \right\} \\ &{}\times \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k+} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right\} \\ &{}\times \left( 1-\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k+} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} \right) ^{l-1} \end{aligned} &{} \text {if }l\ge 1, \end{array}\right. } \end{aligned}$$

which has mean

$$\begin{aligned} \frac{\mathbb {P}_{m}\left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right\} }{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k+} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} }. \end{aligned}$$

Now, if we specialize to the case when \(m = 1\), then the process must pass through k en route to \(\lfloor \kappa n\rfloor \), so

$$\begin{aligned} \mathbb {P}_{1}\left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0} \right\} = 1 \end{aligned}$$

Moreover, conditional on \(T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\), starting from k, \(T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{k+}\) if and only if a birth occurs and the process hits \(\lfloor \kappa n\rfloor \) prior to k:

$$\begin{aligned} \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k+} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right\} = \frac{\lambda _{k}}{\lambda _{k}+\mu _{k}} \mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} \end{aligned}$$

so that

$$\begin{aligned} \mathbb {E}_{1}\left[ T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right] = \sum _{k = 1}^{\lfloor \kappa n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} } \end{aligned}$$

whereas

$$\begin{aligned} \mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right\} = \frac{\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k}\right\} }{\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} }, \end{aligned}$$

since \(\left\{ T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{k}\right\} \subseteq \left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} \), as to reach 0 from \(k+1\), the process must pass via k.

Now, Proposition 2 and its proof tell us that \(\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{0}\right\} \) tends to 1 as \(k \rightarrow \infty \), and, moreover, that this convergence is uniform in n. We may thus apply Lemma A.3, to conclude that

$$\begin{aligned} \mathbb {E}_{1}\left[ T^{(n)}_{\lfloor \kappa n\rfloor } \Big \vert T^{(n)}_{\lfloor \kappa n\rfloor }< T^{(n)}_{0}\right] \sim \sum _{k = 1}^{\lfloor \kappa n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{k}\right\} } \end{aligned}$$

We now observe that

$$\begin{aligned} \mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{k}\right\} = h^{(n)}_{\lfloor \kappa n\rfloor ,k}(k+1) = \frac{e^{nV^{(n)}(k)}}{\sum _{j = k}^{\lfloor \kappa n\rfloor -1} e^{nV^{(n)}(j)}}, \end{aligned}$$

which, by Corollary 1 is asymptotically equivalent to \(1-\frac{\mu \left( \frac{k}{n}\right) }{\lambda \left( \frac{k}{n}\right) }\), so recalling that \(\lambda _{k} = \lambda \left( \frac{k}{n}\right) k\),

$$\begin{aligned} \sum _{k = 1}^{\lfloor \kappa n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \kappa n\rfloor } < T^{(n)}_{k}\right\} } \sim \sum _{k = 1}^{\lfloor \kappa n\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k}. \end{aligned}$$

The latter is the Riemann sum for the integral of \(\frac{1}{(\lambda (x)-\mu (x))x}\) over \([0,\kappa ]\), but this integral diverges at both endpoints. To deal with this, first observe that, using Taylor’s theorem, we may write

$$\begin{aligned} \lambda (x)-\mu (x) = \lambda (0)-\mu (0) + (\lambda '(0)-\mu '(0) + r(x))x, \end{aligned}$$

where \(r(x) \rightarrow 0\) as \(x \rightarrow 0\) and

$$\begin{aligned} \lambda (x)-\mu (x) = (\lambda '(\kappa )-\mu '(\kappa ))(x-\kappa ) +(\lambda ''(\kappa )-\mu ''(\kappa )+R(x))(x-\kappa )^{2}, \end{aligned}$$

for a continuous function R(x) such that \(R(x) \rightarrow 0\) as \(x \rightarrow \kappa \). Then, for arbitrary \(\varepsilon > 0\), we can choose n sufficiently large that

$$\begin{aligned} {\textstyle \lambda (0)-\mu (0)< \lambda \left( \frac{k}{n}\right) -\mu \left( \frac{k}{n}\right) < \lambda (0)-\mu (0) + \varepsilon } \end{aligned}$$

for all \(k \le \frac{n}{\ln {n}}\) and

$$\begin{aligned} {\textstyle (\lambda '(\kappa )-\mu '(\kappa ))\left( \frac{k}{n}-\kappa \right) - \varepsilon< \lambda \left( \frac{k}{n}\right) -\mu \left( \frac{k}{n}\right) < (\lambda '(\kappa )-\mu '(\kappa ))\left( \frac{k}{n}-\kappa \right) + \varepsilon } \end{aligned}$$

for all \(\lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor \le k < \lfloor \kappa n\rfloor \), and split the sum in three:

$$\begin{aligned}&\sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k} + \sum _{k = \left\lfloor \frac{n}{\ln {n}} \right\rfloor +1}^{\lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k} \\&\quad + \sum _{k = \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor }^{\lfloor \kappa n\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k}. \end{aligned}$$

For the first sum, we have that

$$\begin{aligned} \frac{1}{\lambda (0)-\mu (0) + \varepsilon } \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k} \le \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k} \le \frac{1}{\lambda (0)-\mu (0)} \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k}, \end{aligned}$$

whereas

$$\begin{aligned} \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k} = \ln {\left\lfloor \frac{n}{\ln {n}} \right\rfloor } + \gamma + \epsilon _{\left\lfloor \frac{n}{\ln {n}} \right\rfloor }, \end{aligned}$$

where \(\gamma \) is the Euler-Mascheroni constant and \(\epsilon _{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \sim \frac{1}{2\left\lfloor \frac{n}{\ln {n}} \right\rfloor }\).

Similarly,

$$\begin{aligned}&\frac{1}{(\lambda '(\kappa )-\mu '(\kappa )) + \varepsilon )\kappa } \sum _{k = \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor }^{\lfloor \kappa n\rfloor - 1} \frac{1}{k-\kappa n} \le \sum _{k =\lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor }^{\lfloor \kappa n\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k}\\&\quad \le \frac{1}{(\lambda '(\kappa )-\mu '(\kappa )) - \varepsilon )(\kappa - \delta )} \sum _{k = \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor }^{\lfloor \kappa n\rfloor - 1} \frac{1}{k-\kappa n} \end{aligned}$$

and,

$$\begin{aligned} \sum _{k = \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor }^{\lfloor \kappa n\rfloor - 1} \frac{1}{k-\kappa n} = - \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k+\kappa n-\lfloor \kappa n\rfloor }. \end{aligned}$$

Since \(0 \le \kappa n - \lfloor \kappa n\rfloor < 1\),

$$\begin{aligned} \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k+1} < \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k+\kappa n-\lfloor \kappa n\rfloor } \le \sum _{k = 1}^{\left\lfloor \frac{n}{\ln {n}} \right\rfloor } \frac{1}{k} \end{aligned}$$

Finally, to deal with the middle sum, we first note that

$$\begin{aligned} \frac{d}{dx} \frac{1}{(\lambda (x)-\mu (x))x} = -\frac{(\lambda '(x)-\mu '(x))x + \lambda (x)-\mu (x)}{(\lambda (x)-\mu (x))^{2}x^{2}} \end{aligned}$$

is bounded on any closed interval in \((0,\kappa )\) and tends to \(+\infty \) at 0, where it is decreasing, and at \(\kappa \), where it is increasing; in particular, on \(\left[ \frac{1}{\ln {n}},\kappa - \frac{1}{\ln {n}}\right] \) the derivative is bounded above by its values at the endpoints, which are bounded above by

$$\begin{aligned} \frac{\sup _{x \in [0,\kappa ]} -(\lambda '(x)-\mu '(x))x}{\min \{\lambda (0)-\mu (0),(\lambda '(\kappa )-\mu '(\kappa ))\kappa \}} (\ln {n})^{2}. \end{aligned}$$

Thus, applying Lemma A.1, we have that

$$\begin{aligned}&\left| \sum _{k = \left\lfloor \frac{n}{\ln {n}} \right\rfloor +1}^{\lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) - \mu \left( \frac{k}{n}\right) \right) k} - \int _{\frac{1}{n}\left( \left\lfloor \frac{n}{\ln {n}} \right\rfloor +1\right) } ^{\frac{1}{n}\left( \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor \right) } \frac{dx}{(\lambda (x)-\mu (x))x}\right| \\&\quad \le \frac{\sup _{x \in [0,\kappa ]} -(\lambda '(x)-\mu '(x))x}{\min \{\lambda (0)-\mu (0),(\lambda '(\kappa )-\mu '(\kappa ))\kappa \}} \frac{(\ln {n})^{2}}{2n} \end{aligned}$$

Moreover,

$$\begin{aligned} 0 \le \int _{\frac{1}{n}\left( \left\lfloor \frac{n}{\ln {n}} \right\rfloor +1\right) } ^{\frac{1}{n}\left( \lfloor \kappa n\rfloor - \left\lfloor \frac{n}{\ln {n}} \right\rfloor \right) } \frac{dx}{(\lambda (x)-\mu (x))x} \le \int _{\frac{1}{\ln {n}}}^{ \kappa - \frac{1}{\ln {n}}} \frac{dx}{(\lambda (x)-\mu (x))x}, \end{aligned}$$

and, since r(x) and R(x) are continuous, and thus bounded on \([0,\kappa ]\),

$$\begin{aligned} \int _{\frac{1}{\ln {n}}}^{\frac{\kappa }{2}} \frac{dx}{(\lambda (x)-\mu (x))x} - \int _{\frac{1}{\ln {n}}}^{\frac{\kappa }{2}} \frac{dx}{(\lambda (0)-\mu (0))x} = \int _{\frac{1}{\ln {n}}}^{\frac{\kappa }{2}} \frac{\lambda '(0)-\mu '(0) + r(x)}{ (\lambda (0)-\mu (0))(\lambda (x)-\mu (x))}\,dx \end{aligned}$$

and

$$\begin{aligned}&\int _{\frac{\kappa }{2}}^{\kappa -\frac{1}{\ln {n}}} \frac{dx}{(\lambda (x)-\mu (x))x} - \int _{\frac{\kappa }{2}}^{\kappa -\frac{1}{\ln {n}}} \frac{dx}{(\lambda '(\kappa )-\mu '(\kappa ))\kappa (x-\kappa )} \\&\quad = \int _{\frac{1}{\ln {n}}}^{\frac{\kappa }{2}} \frac{\lambda ''(\kappa )-\mu ''(\kappa )+R(x)}{ (\lambda '(\kappa )-\mu '(\kappa ))\kappa h(x)}\,dx \end{aligned}$$

are bounded, where

$$\begin{aligned} h(x) = {\left\{ \begin{array}{ll} \frac{(\lambda (x)-\mu (x))x}{(x-\kappa )} &{} \text {for }x \ne \kappa ,\text { and}\\ (\lambda '(\kappa )-\mu '(\kappa ))\kappa &{} \text {for }x = \kappa . \end{array}\right. } \end{aligned}$$

Finally, we observe that

$$\begin{aligned} \int _{\frac{1}{\ln {n}}}^{\frac{\kappa }{2}} \frac{dx}{(\lambda (0)-\mu (0))x} + \frac{1}{\lambda (0)-\mu (0)}\left( \ln {\frac{\kappa }{2}}-\ln {\left( \frac{1}{\ln {n}}\right) }\right) \end{aligned}$$

and

$$\begin{aligned}&\int _{\frac{\kappa }{2}}^{\kappa -\frac{1}{\ln {n}}} \frac{dx}{(\lambda '(\kappa )-\mu '(\kappa ))\kappa (x-\kappa )}\\&\quad = \frac{1}{(\lambda '(\kappa )-\mu '(\kappa ))\kappa } \left( \ln {\left( \frac{1}{\ln {n}}\right) }-\ln {\frac{\kappa }{2}}\right) , \end{aligned}$$

so that the middle sum is \(\ll \ln {\ln {n}}\).

Since the choice of \(\varepsilon \) is arbitrary, the result follows. \(\square \)

Proof of Proposition 7

We begin with a pair of lemmas:

Lemma B.1

The logistic process conditioned on the event \(T^{(n)}_{0} < T^{(n)}_{M}\) is a Markov birth and death process with transition rates

$$\begin{aligned} \tilde{\lambda }^{(n)}_{k} = \lambda ^{(n)}_{k}\frac{h^{(n)}_{0,M}(k+1)}{h^{(n)}_{0,M}(k)} \quad \text {and} \quad \tilde{\mu }^{(n)}_{k} = \mu ^{(n)}_{k}\frac{h^{(n)}_{0,M}(k-1)}{h^{(n)}_{0,M}(k)}, \end{aligned}$$

In particular, taking \(M = \lfloor \nu n \rfloor \) for \(\kappa< \nu < \eta \), we have that

$$\begin{aligned} \lim _{n \rightarrow \infty } \tilde{\lambda }^{(n)}_{k} = \mu (0) k \quad \text {and} \quad \lim _{n \rightarrow \infty } \tilde{\mu }^{(n)}_{k} = \lambda (0) k \end{aligned}$$

Proof

This is a special case of Doob’s h-transform (Doob 1957).

Lemma B.2

Let

$$\begin{aligned} \tau ^{(n)}_{M}(m) = \mathbb {E}_{m}\left[ T^{(n)}_{0} \Big \vert T^{(n)}_{0} < T^{(n)}_{M}\right] . \end{aligned}$$

Then,

$$\begin{aligned} \tau ^{(n)}_{M}(m) = \sum _{k=1}^{m} \sum _{j=k}^{M-1} \frac{1}{\tilde{\lambda }^{(n)}_{j}} \prod _{l=k}^{j} \frac{\tilde{\lambda }^{(n)}_{l} }{\tilde{\mu }^{(n)}_{l}} \end{aligned}$$

Proof

For \(m < M\) the function \(\tau ^{(n)}_{M}\) satisfies the recurrence relation

$$\begin{aligned} \tau ^{(n)}_{M}(m) = \frac{1}{\tilde{\lambda }^{(n)}_{m} + \tilde{\mu }^{(n)}_{m}} + \frac{\tilde{\lambda }^{(n)}_{m}}{\tilde{\lambda }^{(n)}_{m} + \tilde{\mu }^{(n)}_{m}} \tau ^{(n)}_{M}(m+1) + \frac{\tilde{\mu }^{(n)}_{m}}{\tilde{\lambda }^{(n)}_{m} + \tilde{\mu }^{(n)}_{m}} \tau ^{(n)}_{M}(m-1), \end{aligned}$$

with boundary \(\tau ^{(n)}_{M}(0) = 0\), whilst

$$\begin{aligned} \tau ^{(n)}_{M}(M-1) = \frac{1}{\tilde{\mu }^{(n)}_{M-1}} + \tau ^{(n)}_{M}(M-2). \end{aligned}$$

Solving the recurrence equation gives the result. As previously, we refer to Karlin and Taylor (1975) for a detailed treatment. \(\square \)

The proof consists in showing that the sum

$$\begin{aligned} \sum _{j=i}^{\lfloor \kappa n\rfloor -1} \frac{1}{\tilde{\lambda }^{(n)}_{j}} \prod _{k=i}^{j} \frac{\tilde{\lambda }^{(n)}_{k} }{\tilde{\mu }^{(n)}_{k}} \end{aligned}$$

is uniformly bounded in n, so that we can apply Lemma A.2 to interchange sum and limit to obtain

$$\begin{aligned} \lim _{n \rightarrow \infty } \tau ^{(n)}_{\lfloor \kappa n\rfloor }(m)= & {} \sum _{k=1}^{m} \sum _{j=k}^{\infty } \frac{1}{\mu (0) j} \left( \frac{\mu (0)}{\lambda (0)}\right) ^{j} = \frac{1}{\mu (0)} \sum _{k=1}^{m} \sum _{j=k}^{\infty } \int _{0}^{\frac{\mu (0)}{\lambda (0)}} x^{j-1}\, dx\\= & {} \frac{1}{\mu (0)} \sum _{k=1}^{m} \int _{0}^{\frac{\mu (0)}{\lambda (0)}} \frac{x^{k-1}}{1-x}\, dx = \frac{1}{\mu (0)} \int _{0}^{\frac{\mu (0)}{\lambda (0)}} \frac{1-x^{m}}{(1-x)^{2}}\, dx. \end{aligned}$$

First,

$$\begin{aligned} \prod _{l=k}^{j} \frac{\tilde{\lambda }^{(n)}_{l} }{\tilde{\mu }^{(n)}_{l}}= & {} \prod _{l=k}^{j} \frac{\lambda ^{(n)}_{l} }{\mu ^{(n)}_{l}} \prod _{l=k}^{j} \frac{h^{(n)}_{0,\lfloor \kappa n\rfloor }(l+1)}{h^{(n)}_{0,\lfloor \kappa n\rfloor }(k-1)}\\= & {} \prod _{l=1}^{k-1} \frac{\mu ^{(n)}_{l}}{\lambda ^{(n)}_{l}} \prod _{l=1}^{j} \frac{\lambda ^{(n)}_{l} }{\mu ^{(n)}_{l}} \frac{h^{(n)}_{0,\lfloor \kappa n\rfloor }(j+1)h^{(n)}_{0,\lfloor \kappa n\rfloor }(j)}{h^{(n)}_{0,\lfloor \kappa n\rfloor }(k-1)h^{(n)}_{0,\lfloor \kappa n\rfloor }(k-1)}, \end{aligned}$$

so, since \(i \le m\), we can ignore terms in i and consider only the sum

$$\begin{aligned}&\sum _{j=1}^{\lfloor \kappa n\rfloor -1} \frac{h^{(n)}_{0,\lfloor \kappa n\rfloor }(j+1)h^{(n)}_{0,\lfloor \kappa n\rfloor }(j)}{\tilde{\lambda }^{(n)}_{j}} \prod _{k=1}^{j} \frac{\lambda ^{(n)}_{k} }{\mu ^{(n)}_{k}} = \sum _{j=1}^{\lfloor \kappa n\rfloor -1} \frac{(h^{(n)}_{0,\lfloor \kappa n\rfloor }(j))^{2}}{\lambda ^{(n)}_{j}} e^{-n V^{(n)}(j)}\\&\quad \le \frac{2}{\left( \sum _{k=0}^{\lfloor \kappa n\rfloor -1} e^{n V^{(n)}(k)}\right) ^{2}} \sum _{j=1}^{\lfloor \kappa n\rfloor -1} \frac{1}{\lambda ^{(n)}_{j}} \sum _{k=j}^{\lfloor \kappa n\rfloor -1} e^{n(2V^{(n)}(k)-V^{(n)}(j))}\\&\quad \le \frac{2}{\lambda (0)\left( \sum _{k=0}^{\lfloor \kappa n\rfloor -1} e^{n V^{(n)}(k)}\right) ^{2}} \sum _{j=1}^{\lfloor \kappa n\rfloor -1} \sum _{k=j}^{\lfloor \kappa n\rfloor -1} e^{n V^{(n)}(k)}. \end{aligned}$$

Now, by Lemma A.1, \(n V^{(n)}(k) \le n \int _{0}^{\frac{k}{n}} f(x)\, dx + f\left( \frac{k}{n}\right) - f(0)\), whereas, by the intermediate value theorem for integrals, we have

$$\begin{aligned} n \int _{0}^{\frac{k}{n}} f(x)\, dx = f(z_{k,n}) i \end{aligned}$$

for some \(z_{k,n} \in [0,\frac{k}{n}]\). Now, fix \(0< \varepsilon < \kappa \). Provided \(k \le \lfloor \nu n \rfloor \) for \(0< \nu < \eta \), either \(\frac{k}{n} < \varepsilon \), in which case \(f(z_{k,n})< f(\varepsilon ) < 0\), or

$$\begin{aligned} f(z_{k,n}) \varepsilon< f(z_{k,n}) \frac{k}{n} = \int _{0}^{\frac{k}{n}} f(x)\, dx< \min \left\{ \int _{0}^{\varepsilon } f(x)\, dx, \int _{0}^{\nu } f(x)\, dx\right\} < 0, \end{aligned}$$

and thus, \(\rho {:}{=}\sup _{n} f(z_{k,n}) < 0\).

Now \(0 \le f\left( \frac{k}{n}\right) - f(0) \le f(\nu ) - f(0)\), so if

$$\begin{aligned} a_{n,k} = {\left\{ \begin{array}{ll} \prod _{j=1}^{k} \frac{\mu _{j}}{\lambda _{j}} &{} \text {if }k \le \lfloor \nu n \rfloor ,\text { and}\\ 0 &{} \text {otherwise} \end{array}\right. }, \end{aligned}$$

then \(a_{n,k} \le e^{f(\nu ) - f(0)} e^{\rho i}\), and \(e^{\rho } < 1\), so

$$\begin{aligned} 1 \le \sum _{k=j}^{\lfloor \nu n\rfloor -1} e^{n V^{(n)}(k)} \le \sum _{k = j}^{\infty } e^{f(\nu ) - f(0)} e^{\rho k} = \frac{e^{f(\nu ) - f(0)}}{1-e^{\rho }} e^{\rho j}, \end{aligned}$$

and the sum above is bounded, independently of n. \(\square \)

Proof of Proposition 8

We first observe that the time to extinction is simply the time spent in all states \(k > 0\):

$$\begin{aligned} \mathbb {E}_{m}\left[ T^{(n)}_{0}\right]= & {} \sum _{k = 1}^{\infty } \mathbb {E}_{m}\left[ S^{(n)}_{k}(T^{(n)}_{0})\right] \\= & {} \sum _{k = 1}^{\infty } \frac{1}{\lambda _{k}+\mu _{k}} \mathbb {E}_{m}\left[ N^{(n)}_{k}(T^{(n)}_{0})\right] , \end{aligned}$$

as \(\frac{1}{\lambda _{k}+\mu _{k}}\) is the expected time spent in state k per visit, and, by definition, \(N^{(n)}_{k}(T^{(n)}_{0})\) is the total number of visits to k prior to extinction. As before, \(N^{(n)}_{k}(T^{(n)}_{0})\) has a modified geometric distribution with mean

$$\begin{aligned} \frac{\mathbb {P}_{m}\left\{ T^{(n)}_{k}< T^{(n)}_{0}\right\} }{\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} }. \end{aligned}$$

For the denominator, the process can only fail to return to k if the next event is a death and the process hits 0 prior to hitting k:

$$\begin{aligned} \mathbb {P}_{k}\left\{ T^{(n)}_{0}< T^{(n)}_{k+}\right\} = \frac{\mu _{k}}{\lambda _{k}+\mu _{k}} \mathbb {P}_{k-1}\left\{ T^{(n)}_{0} < T^{(n)}_{k}\right\} = \frac{\mu _{k}}{\lambda _{k}+\mu _{k}} \frac{e^{n V^{(n)}(k-1)}}{\sum _{j=0}^{k-1} e^{n V^{(n)}(j)}}. \end{aligned}$$

We first note that in light of (B.1), there is a bound \(\epsilon _{n}\) that tends to 0 as \(n \rightarrow \infty \) such that

$$\begin{aligned} \left| \frac{e^{n V^{(n)}(k-1)}}{\sqrt{\frac{\mu \left( \frac{k-1}{n}\right) }{\mu (0)} \frac{\lambda (0)}{\lambda \left( \frac{k-1}{n}\right) }} e^{n V\left( \frac{k-1}{n}\right) } }-1 \right| < \epsilon _{n} \end{aligned}$$

uniformly in k.

Now, fix some small \(\delta >0\) such that \(V(\delta ) > V(\kappa )\). We consider the sum in k in two parts, \(k \le \lfloor \delta n \rfloor \), and \(k > \lfloor \delta n \rfloor \). We first consider the latter.

As we observed in Remark 4, since \(V(0) > V(\frac{k-1}{n})\) and \(k > \lfloor \delta n \rfloor \),

$$\begin{aligned} \left| \frac{\sum _{j=0}^{k-1} e^{n V^{(n)}(j)}}{\frac{1}{1-\frac{\mu (0)}{\lambda (0)}}}-1 \right| < \eta _{n}, \end{aligned}$$

where \(\eta _{n} \rightarrow 0\) as \(n \rightarrow \infty \), independently of k. Thus,

$$\begin{aligned} \mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} \sim \left( 1-\frac{\mu (0)}{\lambda (0)}\right) \sqrt{\frac{\mu \left( \frac{k-1}{n}\right) }{\mu (0)} \frac{\lambda (0)}{\lambda \left( \frac{k-1}{n}\right) }} e^{n V\left( \frac{k-1}{n}\right) } \end{aligned}$$

uniformly in i.

For the numerator, from Proposition 2, we know that

$$\begin{aligned} \mathbb {P}_{m}\left\{ T^{(n)}_{k} < T^{(n)}_{0}\right\} \sim 1-\left( \frac{\mu (0)}{\lambda (0)}\right) ^{m} \end{aligned}$$

if \(m < \eta n\), whereas

$$\begin{aligned} \lim _{n \rightarrow \infty } \mathbb {P}_{m}\left\{ T^{(n)}_{k} < T^{(n)}_{0}\right\} =0 \end{aligned}$$

otherwise, again uniformly in k.

Thus, since \(\mu _{k} = n \mu \left( \frac{k}{n}\right) \frac{k}{n}\), \(-V(x)\) is maximized at \(x = \kappa \), and \(\mu (\kappa ) = \lambda (\kappa )\), from Proposition 1 we have

$$\begin{aligned}&\sum _{k = \lfloor \delta n \rfloor +1}^{\infty } \frac{1}{\lambda _{k}+\mu _{k}} \mathbb {E}_{m}\left[ N^{(n)}_{k}(T^{(n)}_{0})\right] \\&\quad \sim \frac{1-\left( \frac{\mu (0)}{\lambda (0)}\right) ^{m}}{1-\frac{\mu (0)}{\lambda (0)}} \sum _{k = \lfloor \delta n \rfloor + 1}^{\lfloor \eta n \rfloor } \frac{e^{-n V\left( \frac{k-1}{n}\right) }}{n \mu \left( \frac{k}{n}\right) \frac{k}{n} \sqrt{\frac{\mu \left( \frac{k-1}{n}\right) }{\lambda \left( \frac{k-1}{n}\right) }\frac{\lambda (0)}{\mu (0)}}}\\&\quad \sim \sqrt{\frac{2\pi }{n\left( \frac{\mu '(\kappa )}{\mu (\kappa )}-\frac{\lambda '(\kappa )}{\lambda (\kappa )}\right) } \frac{\mu (0)}{\lambda (0)}} \frac{1-\left( \frac{\mu (0)}{\lambda (0)}\right) ^{m}}{1-\left( \frac{\mu (0)}{\lambda (0)}\right) } \frac{e^{-n V(\kappa )}}{\mu (\kappa ) \kappa \left( 1-\frac{\lambda (0)}{\mu (0)}\right) }. \end{aligned}$$

Finally, we observe that for \(k \le \lfloor \delta n \rfloor \),

$$\begin{aligned} \mathbb {P}_{m}\left\{ T^{(n)}_{k} < T^{(n)}_{0}\right\} \le 1, \end{aligned}$$

whereas, since \(V^{(n)}(j) < 0\),

$$\begin{aligned} \sum _{j=0}^{k-1} e^{n V^{(n)}(j)} \le k-1 \le \delta n. \end{aligned}$$

Moreover, since \(\lambda \) and \(\mu \) are, respectively, decreasing and increasing,

$$\begin{aligned} e^{n V^{(n)}(k-1)} \ge \sqrt{\frac{\mu \left( \frac{k-1}{n}\right) }{\mu (0)} \frac{\lambda (0)}{\lambda \left( \frac{k-1}{n}\right) }} e^{n V\left( \frac{k-1}{n}\right) } (1-\epsilon _{n}) \ge e^{n V(\delta )} (1-\epsilon _{n}), \end{aligned}$$

so that

$$\begin{aligned} \sum _{k = 1}^{\lfloor \delta n \rfloor } \frac{1}{\lambda _{k}+\mu _{k}} \mathbb {E}_{m}\left[ N^{(n)}_{k}(T^{(n)}_{0})\right] \le \frac{(\delta n)^{2}}{\mu (0)(1-\epsilon _{n})} e^{-n V(\delta )}, \end{aligned}$$

which is asymptotically smaller than the sum over \(k > \lfloor \delta n \rfloor \). \(\square \)

Proof of Corollary 4

By the strong Markov property, each excursion starting from state k is independent. Thus, conditional on \(n_{k}\) visits to k, the time spent in k after each return is a sum of \(n_{k}\) independent exponentially distributed random variables with rate \(\lambda _{k} + \mu _{k}\) i.e., a gamma-distributed with shape and rate parameters \(n_{k}\) and \(\lambda _{k} + \mu _{k}\): the probability that the total time is in \([t,t+dt)\) is

$$\begin{aligned}&\int _{0}^{t}\int _{0}^{t-t_{1}} \cdots \int _{0}^{t-t_{1}-t_{2}-\cdots -t_{n_{k}-2}} \prod _{j=1}^{n_{k}-1} (\lambda _{k} + \mu _{k}) e^{-(\lambda _{k} + \mu _{k})t_{j}}\\&\qquad \times (\lambda _{k} + \mu _{k}) e^{-(\lambda _{k} + \mu _{k})(t-t_{1}-t_{2}-\cdots -t_{n_{k}-1})} \, dt_{1}dt_{2}\cdots dt_{n_{k}-1}\\&\quad = \frac{(\lambda _{k} + \mu _{k})^{n_{k}}}{(n_{k}-1)!} t^{n_{k}-1} e^{-(\lambda _{k} + \mu _{k})t}. \end{aligned}$$

Now, we observed above that the number of visits to k prior to extinction, \(N^{(n)}_{k}(T^{(n)}_{0})\), has a modified geometric distribution, with probability \(\mathbb {P}_{m}\left\{ T^{(n)}_{k} < T^{(n)}_{0}\right\} \) of reaching k prior to extinction, and return probability \(\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} \). The former gives the probability that \(L^{(n)}_{k}(T^{(n)}_{0}) > 0\), whereas summing over the distribution of \(N^{(n)}_{k}(T^{(n)}_{0})\) the probability that \(L^{(n)}_{k}(T^{(n)}_{0}) \in [t,t+dt)\) is

$$\begin{aligned}&\mathbb {P}_{m}\left\{ T^{(n)}_{k}< T^{(n)}_{0}\right\} \left( 1-\mathbb {P}_{k}\left\{ T^{(n)}_{0}< T^{(n)}_{k+}\right\} \right) \\&\qquad \times \sum _{n_{k} = 1}^{\infty } \frac{(\lambda _{k} + \mu _{k})^{n_{k}}}{(n_{k}-1)!} t^{n_{k}-1} e^{-(\lambda _{k} + \mu _{k})t}\mathbb {P}_{k}\left\{ T^{(n)}_{0}< T^{(n)}_{k+}\right\} ^{n_{k}-1}\\&\quad = \mathbb {P}_{m}\left\{ T^{(n)}_{k}< T^{(n)}_{0}\right\} (\lambda _{k} + \mu _{k}) \left( 1-\mathbb {P}_{k}\left\{ T^{(n)}_{0}< T^{(n)}_{k+}\right\} \right) e^{-(\lambda _{k} + \mu _{k}) \left( 1-\mathbb {P}_{k}\left\{ T^{(n)}_{0} < T^{(n)}_{k+}\right\} \right) t}. \end{aligned}$$

The result then follows using the asymptotic approximations of the previous proof. \(\square \)

Proof of Proposition 9

Proceeding as previously, we have that

$$\begin{aligned} \mathbb {E}_{1}\left[ T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right] \sim \sum _{k = 1}^{\lfloor \nu n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} } \end{aligned}$$

and

$$\begin{aligned} \mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} = \frac{1}{\sum _{j = k}^{\lfloor \nu n\rfloor -1} e^{n(V^{(n)}(j)-V^{(n)}(k))}}. \end{aligned}$$

Recall, \(\nu ' \ne \nu \) is the unique value such that \(V(\nu ') = V(\nu )\). Then, for \(k < \lfloor \nu ' n\rfloor \), \(V\left( \frac{j}{n}\right) - V\left( \frac{k}{n}\right) \) is maximized at \(j = k\), whereas for \(\lfloor \nu ' n\rfloor< k < \lfloor \nu n\rfloor \), it is maximized at \(j = \lfloor \nu n\rfloor - 1\).

We thus have

$$\begin{aligned} \mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} \sim 1-\frac{\mu \left( \frac{k}{n}\right) }{\lambda \left( \frac{k}{n}\right) } \end{aligned}$$

for \(k < \lfloor \nu ' n\rfloor \), whereas for \(\lfloor \nu ' n\rfloor< k < \lfloor \nu n\rfloor \),

$$\begin{aligned} \frac{1}{\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} } \sim \frac{\sqrt{\frac{\mu (\nu )\lambda \left( \frac{k}{n}\right) }{\lambda (\nu )\mu \left( \frac{k}{n}\right) }} e^{n\left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) - V\left( \frac{k}{n}\right) \right) }}{1-\frac{\lambda (\nu )}{\mu (\nu )}} \end{aligned}$$

We now split the sum over k at \(\lfloor \nu ' n \rfloor \). Then,

$$\begin{aligned} \sum _{k = 1}^{\lfloor \nu ' n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} } \sim \sum _{k = 1}^{\lfloor \nu ' n\rfloor - 1} \frac{1}{\left( \lambda \left( \frac{k}{n}\right) -\mu \left( \frac{k}{n}\right) \right) i}, \end{aligned}$$

whereas

$$\begin{aligned} \lambda (0)-\mu (0) \le \lambda \left( \frac{k}{n}\right) -\mu \left( \frac{k}{n}\right) \le \lambda (\nu )-\mu (\nu ), \end{aligned}$$

so, as previously,

$$\begin{aligned} \frac{1}{\lambda (\nu )-\mu (\nu )}\le & {} \liminf _{n \rightarrow \infty } \frac{1}{\ln (\nu ' n)} \sum _{k = 1}^{\lfloor \nu ' n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor }< T^{(n)}_{k}\right\} }\\\le & {} \limsup _{n \rightarrow \infty } \frac{1}{\ln (\nu ' n)} \sum _{k = 1}^{\lfloor \nu ' n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} } \le \frac{1}{\lambda (0)-\mu (0)}. \end{aligned}$$

On the other hand, we observe that for \(x \in [\nu ',\nu ]\), \(V(\nu ) - V(x)\) is maximized at \(x = \kappa \), so that, applying Proposition 1, we have

$$\begin{aligned}&\sum _{k = \lfloor \nu ' n\rfloor }^{\lfloor \nu n\rfloor - 1} \frac{1}{\lambda _{k}\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n\rfloor } < T^{(n)}_{k}\right\} } \sim \sum _{k = \lfloor \nu ' n\rfloor }^{\lfloor \nu n\rfloor - 1} \frac{e^{n\left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) - V\left( \frac{k}{n}\right) \right) }}{n \lambda \left( \frac{k}{n}\right) \left( \frac{k}{n}\right) \left( 1-\frac{\lambda (\nu )}{\mu (\nu )}\right) }\\&\quad \sim \sqrt{\frac{2\pi }{n\left( \frac{\mu '(\kappa )}{\mu (\kappa )}-\frac{\lambda '(\kappa )}{\lambda (\kappa )}\right) }} \frac{\sqrt{\frac{\mu (\nu )}{\lambda (\nu )}\frac{\lambda (\kappa )}{\mu (\kappa )}} e^{n\left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V(\kappa )\right) }}{\lambda (\kappa ) \kappa \left( 1-\frac{\lambda (\nu )}{\mu (\nu )}\right) }. \end{aligned}$$

The result follows on observing that \(\lambda (\kappa ) = \mu (\kappa )\). \(\square \)

Proof of Proposition 10

As previously, we have that

$$\begin{aligned} \mathbb {E}_{\lfloor \nu n \rfloor }\left[ T^{(n)}_{\lfloor \kappa n \rfloor }\right] = \sum _{k = \lfloor \kappa n \rfloor + 1}^{\infty } \frac{1}{n (\lambda _{k}+\mu _{k})} \frac{\mathbb {P}_{\lfloor \nu n \rfloor } \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n \rfloor }\right\} }{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k+}\right\} }. \end{aligned}$$

Now,

$$\begin{aligned} \mathbb {P}_{\lfloor \nu n \rfloor } \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n \rfloor }\right\} = {\left\{ \begin{array}{ll} 1 &{} \text {if }\lfloor \kappa n \rfloor< k \le \lfloor \nu n \rfloor ,\text { and}\\ \frac{\sum _{j = \lfloor \kappa n \rfloor }^{\lfloor \nu n \rfloor -1} e^{n V^{(n)}(j)}}{\sum _{j = \lfloor \kappa n \rfloor }^{k-1} e^{n V^{(n)}(j)}} &{} \text {if }\lfloor \nu n \rfloor < k, \end{array}\right. } \end{aligned}$$

whereas

$$\begin{aligned} \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor }< T^{(n)}_{k+}\right\} = \frac{\mu _{k}}{\lambda _{k}+\mu _{k}} \mathbb {P}_{k-1}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k}\right\} \end{aligned}$$

and

$$\begin{aligned} \mathbb {P}_{k-1}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k}\right\} = \frac{e^{n V^{(n)}(k-1)}}{\sum _{j = \lfloor \kappa n \rfloor }^{k-1} e^{n V^{(n)}(j)}}. \end{aligned}$$

Thus, for \(k > \lfloor \nu n \rfloor \),

$$\begin{aligned}&\frac{1}{n (\lambda _{k}+\mu _{k})} \frac{\mathbb {P}_{\lfloor \nu n \rfloor } \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n \rfloor }\right\} }{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k+}\right\} } = \frac{\sum _{j = \lfloor \kappa n \rfloor }^{\lfloor \nu n \rfloor -1} e^{n V^{(n)}(j)}}{n \mu _{k} e^{n V^{(n)}(k-1)}} \\&\quad \sim \frac{\sqrt{\frac{\mu (\nu )\lambda \left( \frac{k-1}{n}\right) }{\lambda (\nu )\mu \left( \frac{k-1}{n}\right) }}e^{n \left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V\left( \frac{k-1}{n}\right) \right) }}{\mu \left( \frac{k-1}{n}\right) k \left( 1-\frac{\lambda (\nu )}{\mu (\nu )}\right) } \end{aligned}$$

since V is minimized at \(\kappa \). Moreover, as \(\mu (x)\) and \(\lambda (x)\) are, respectively, increasing and decreasing, the latter is bounded above by

$$\begin{aligned} \frac{e^{n \left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V\left( \frac{k-1}{n}\right) \right) }}{ (\mu (\nu )-\lambda (\nu ))\nu }. \end{aligned}$$

Further,

$$\begin{aligned}&V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V\left( \frac{k-1}{n}\right) = - V'(z)\left( \frac{k-1}{n}-\frac{\lfloor \nu n\rfloor }{n}\right) \\&\quad < -V'\left( \frac{\lfloor \nu n\rfloor }{n}\right) \left( \frac{k-1}{n}-\frac{\lfloor \nu n\rfloor }{n}L\right) \end{aligned}$$

for some \(z \in \left[ \frac{\lfloor \nu n\rfloor }{n},\frac{k-1}{n}\right] \); the inequality follows since \(V''(x) > 0\) for all x. Thus,

$$\begin{aligned} \sum _{k = \lfloor \nu n \rfloor }^{\infty } e^{n \left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V\left( \frac{k-1}{n}\right) \right) } < e^{V'\left( \frac{\lfloor \nu n\rfloor }{n}\right) } \sum _{k = 0}^{\infty } e^{-V'\left( \frac{\lfloor \nu n\rfloor }{n}\right) k} = \frac{e^{V'\left( \frac{\lfloor \nu n\rfloor }{n}\right) }}{1-e^{-V'\left( \frac{\lfloor \nu n\rfloor }{n}\right) }}, \end{aligned}$$

since \(\nu > \kappa \) and \(V'(\kappa ) = 0\). In particular, we see that the sum

$$\begin{aligned} \sum _{k = \lfloor \nu n \rfloor + 1}^{\infty } \frac{1}{n (\lambda _{k}+\mu _{k})} \frac{\mathbb {P}_{\lfloor \nu n \rfloor } \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \kappa n \rfloor }\right\} }{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k+}\right\} } \end{aligned}$$

is bounded above.

Finally, consider

$$\begin{aligned} \sum _{k = \lfloor \kappa n \rfloor + 1}^{\lfloor \nu n \rfloor } \frac{1}{n \mu _{k} \mathbb {P}_{k-1}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k}\right\} }. \end{aligned}$$

Arguing as above,

$$\begin{aligned} \mathbb {P}_{k-1}\left\{ T^{(n)}_{\lfloor \kappa n \rfloor } < T^{(n)}_{k}\right\} \sim \frac{1}{1 - \frac{\lambda \left( \frac{k-1}{n}\right) }{\mu \left( \frac{k-1}{n}\right) }} \sim \frac{1}{1 - \frac{\lambda \left( \frac{k}{n}\right) }{\mu \left( \frac{k}{n}\right) }}, \end{aligned}$$

and, proceeding as in Proposition 6, one can show that

$$\begin{aligned} \sum _{k = \lfloor \kappa n \rfloor + 1}^{\lfloor \nu n \rfloor } \frac{1}{\left( \lambda \left( \frac{k}{n}\right) -\mu \left( \frac{k}{n}\right) \right) k} \sim - \frac{1}{(\lambda '(\kappa )-\mu '(\kappa ))\kappa }\ln {n}. \end{aligned}$$

\(\square \)

Proof of Proposition 11

To begin, we decompose the expectation according to whether, starting from \(\lfloor \nu n \rfloor \), the next event is a birth or a death:

$$\begin{aligned}&\mathbb {E}_{\lfloor \nu n \rfloor } \left[ T^{(n)}_{\lfloor \nu n \rfloor +} \Big \vert T^{(n)}_{\lfloor \nu n \rfloor +}< T^{(n)}_{0}\right] \\&\quad = \frac{\lambda _{\lfloor \nu n \rfloor }}{\lambda _{\lfloor \nu n \rfloor } + \mu _{\lfloor \nu n \rfloor }} \mathbb {E}_{\lfloor \nu n \rfloor + 1} \left[ T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right] \\&\qquad + \frac{\mu _{\lfloor \nu n \rfloor }}{\lambda _{\lfloor \nu n \rfloor } + \mu _{\lfloor \nu n \rfloor }} \mathbb {E}_{\lfloor \nu n \rfloor - 1} \left[ T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right] \\&\quad = \frac{\lambda _{\lfloor \nu n \rfloor }}{\lambda _{\lfloor \nu n \rfloor } + \mu _{\lfloor \nu n \rfloor }} \sum _{k = \lfloor \nu n \rfloor + 1}^{\infty } \frac{\mathbb {P}_{\lfloor \nu n \rfloor + 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }{n \mu _{k} \mathbb {P}_{k - 1} \left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }\\&\qquad + \frac{\mu _{\lfloor \nu n \rfloor }}{\lambda _{\lfloor \nu n \rfloor } + \mu _{\lfloor \nu n \rfloor }} \sum _{k=1}^{\lfloor \nu n \rfloor - 1} \frac{\mathbb {P}_{\lfloor \nu n \rfloor - 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }{n \lambda _{k} \mathbb {P}_{k + 1} \left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} }. \end{aligned}$$

For the first sum, we observe that for any \(k \ge \lfloor \nu n \rfloor \),

$$\begin{aligned} \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} = 1, \end{aligned}$$

and we may thus replace the conditional probabilities with the unconditional ones. Then, using (5),

$$\begin{aligned} \frac{\mathbb {P}_{\lfloor \nu n \rfloor + 1}\left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor }\right\} }{\mathbb {P}_{k - 1}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{k} \right\} } = e^{n \left( V^{(n)}(\lfloor \nu n \rfloor ) - V^{(n)}(k)\right) }, \end{aligned}$$

so that, using Lemma 1, the first sum is asymptotic to

$$\begin{aligned} \frac{\mu (\nu )}{\mu (\nu ) + \lambda (\nu )} \frac{1}{(\mu (\nu ) - \lambda (\nu ))\nu }. \end{aligned}$$

For the second sum, we observe that

$$\begin{aligned} \left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{k}\right\} \cap \left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} = \left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{k}\right\} , \end{aligned}$$

whereas

$$\begin{aligned} \mathbb {P}_{\lfloor \nu n \rfloor - 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor }, T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} = \mathbb {P}_{\lfloor \nu n \rfloor - 1}\left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor }\right\} \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} , \end{aligned}$$

so that, applying Bayes’ theorem,

$$\begin{aligned} \frac{\mathbb {P}_{\lfloor \nu n \rfloor - 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor } \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }{\mathbb {P}_{k + 1} \left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{k} \Big \vert T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} } = \frac{\mathbb {P}_{\lfloor \nu n \rfloor - 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor }\right\} \mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }{\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{k}\right\} }. \end{aligned}$$

Again, from (5), we see that

$$\begin{aligned} \frac{\mathbb {P}_{\lfloor \nu n \rfloor - 1} \left\{ T^{(n)}_{k}< T^{(n)}_{\lfloor \nu n \rfloor }\right\} }{\mathbb {P}_{k+1}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{k}\right\} } = e^{n V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))}, \end{aligned}$$

so this sum reduces to

$$\begin{aligned} \sum _{k=1}^{\lfloor \nu n \rfloor - 1} \frac{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} }{n \lambda _{k}} e^{n V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))}. \end{aligned}$$

To evaluate the sum, it is useful to consider it in two pieces. To do so, we first re-introduce \(\nu ' < \kappa \) such that \(V(\nu ') = V(\nu )\), and then consider

$$\begin{aligned}&\sum _{k=1}^{\lfloor \nu ' n \rfloor - 1} \frac{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor }< T^{(n)}_{0}\right\} }{n \lambda _{k}} e^{n V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))}\\&\quad + \sum _{k=\lfloor \nu ' n \rfloor }^{\lfloor \nu n \rfloor - 1} \frac{\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} }{n \lambda _{k}} e^{n V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))}. \end{aligned}$$

For the former, \(V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))\) is maximized at \(k = \lfloor \nu ' n \rfloor -1\), whereas \(\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} \) us bounded above by 1. Using Lemma 1, the first sum is asymptotically bounded above by

$$\begin{aligned} \frac{1}{\left( \lambda \left( \frac{\lfloor \nu ' n \rfloor -1}{n}\right) - \mu \left( \frac{\lfloor \nu ' n \rfloor -1}{n}\right) \right) (\lfloor \nu ' n \rfloor -1)} \sqrt{\frac{\mu \left( \frac{\lfloor \nu n \rfloor -1}{n}\right) \lambda \left( \frac{\lfloor \nu ' n \rfloor -1}{n}\right) }{\lambda \left( \frac{\lfloor \nu n \rfloor -1}{n}\right) \mu \left( \frac{\lfloor \nu ' n \rfloor -1}{n}\right) }}. \end{aligned}$$

For the second piece, we note that for \(\lfloor \nu ' n \rfloor \le k < \lfloor \nu ' n \rfloor \), \(\mathbb {P}_{k}\left\{ T^{(n)}_{\lfloor \nu n \rfloor } < T^{(n)}_{0}\right\} \sim 1\), whereas \(V^{(n)}(\lfloor \nu n \rfloor -1) - V^{(n)}(k))\) is maximized at \(\lfloor \kappa n \rfloor \), so appealing to Lemma 1, it is asymptotically equivalent to

$$\begin{aligned} \sqrt{\frac{2\pi }{n\left( \frac{\mu '(\kappa )}{\mu (\kappa )}-\frac{\lambda '(\kappa )}{\lambda (\kappa )}\right) } \frac{\mu (\nu )}{\lambda (\nu )}} \frac{e^{n\left( V\left( \frac{\lfloor \nu n\rfloor }{n}\right) -V(\kappa )\right) }}{\lambda (\kappa ) \kappa } \end{aligned}$$

The result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, T.L. Invasion probabilities, hitting times, and some fluctuation theory for the stochastic logistic process. J. Math. Biol. 77, 1193–1231 (2018). https://doi.org/10.1007/s00285-018-1250-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1250-x

Keywords

Mathematics Subject Classification

Navigation