Log in

Watson–Crick pairing, the Heisenberg group and Milnor invariants

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the secondary structure of RNA determined by Watson–Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenberg invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson–Crick pairs found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cochran TD, Orr KE (1993) Not all links are concordant to boundary links. Ann Math (2) 138(3): 519–554

    Article  MATH  MathSciNet  Google Scholar 

  2. Cochran TD, Orr KE (2003) Teichner, Peter Knot concordance, Whitney towers and L 2-signatures. Ann Math (2) 157(2): 433–519

    Article  MATH  MathSciNet  Google Scholar 

  3. Casson AJ (1975) Link cobordism and Milnor’s invariant. Bull London Math Soc 7: 39–40

    Article  MATH  MathSciNet  Google Scholar 

  4. Freedman MH (1995) Teichner, Peter 4-manifold topology. I. Subexponential groups. Invent Math 122(3): 509–529

    Article  MATH  MathSciNet  Google Scholar 

  5. Giffen CH (1979) Link concordance implies link homotopy. Math Scand 45(2): 243–254

    MATH  MathSciNet  Google Scholar 

  6. Goldsmith DL (1979) Concordance implies homotopy for classical links in M 3. Comment Math Helv 54(3): 347–355

    Article  MATH  MathSciNet  Google Scholar 

  7. Krushkal VS (1998) Additivity properties of Milnor’s \({\overlineµ}\) -invariants. J Knot Theory Ramifications 7(5): 625–637

    Article  MATH  MathSciNet  Google Scholar 

  8. Levine JP (1987) Surgery on links and the \({\overlineµ}\) -invariants. Topology 26(1): 45–61

    Article  MATH  MathSciNet  Google Scholar 

  9. Milnor J (1954) Link groups. Ann Math 59(2): 177–195

    Article  MathSciNet  Google Scholar 

  10. Milnor J (1957) Isotopy of links. Algebraic geometry and topology. A symposium in honor of S. Lefschetz. Princeton University Press, Princeton, NJ, pp 280–306

    Google Scholar 

  11. Stallings J (1965) Homology and central series of groups. J Algebra 2: 170–181

    Article  MATH  MathSciNet  Google Scholar 

  12. Gesteland RF, Atkins JF (1993) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, NY, USA

    Google Scholar 

  13. Fox GE, Woese CR (1975) RNA secondary structure. Nature 256: 505

    Article  Google Scholar 

  14. Gardner PP, Giegerich RA (2004) Comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinform 5: Art. No. 140

  15. Ding Y (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31: 7280

    Article  Google Scholar 

  16. Dirks RM (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24: 1664

    Article  Google Scholar 

  17. Fields DS (1996) An analysis of large rRNA sequences folded by a thermodynamic method. Fold Des 1: 419

    Article  Google Scholar 

  18. Gorodkin J (2001) Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res 29: 2135

    Article  Google Scholar 

  19. Higgs PG (2000) RNA secondary structure: physical and computational aspects. Quart Rev Biophys 33: 199

    Article  Google Scholar 

  20. Hofacker IL (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20: 2222

    Article  Google Scholar 

  21. Jeffares DC (1998) Relics from the RNA world. J Mol Evol 46: 18

    Article  Google Scholar 

  22. Ji YM (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20: 1591

    Article  Google Scholar 

  23. Knudsen B (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15: 446

    Article  Google Scholar 

  24. Moulton V (2000) Metrics on RNA secondary structures. J Comput Biol 7: 277

    Article  Google Scholar 

  25. Nussinov R (1978) Algorithms for loop matchings. SIAM J Appl Math 35: 68

    Article  MATH  MathSciNet  Google Scholar 

  26. Rivas E (2000) The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16: 334

    Article  Google Scholar 

  27. Tinoco I (1999) How RNA folds. J Mol Biol 293: 271

    Article  Google Scholar 

  28. Wang ZZ (2001) Alignment between two RNA structures. Math Found Comput Sci 2136: 690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Gadgil.

Additional information

Partially supported by DST (under grant DSTO773) and UGC (under SAP-DSA Phase IV).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadgil, S. Watson–Crick pairing, the Heisenberg group and Milnor invariants. J. Math. Biol. 59, 123–142 (2009). https://doi.org/10.1007/s00285-008-0223-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0223-x

Keywords

Mathematics Subject Classification (2000)

Navigation