Log in

A mathematical model for analysis of the cell cycle in cell lines derived from human tumors

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

The growth of human cancers is characterised by long and variable cell cycle times that are controlled by stochastic events prior to DNA replication and cell division. Treatment with radiotherapy or chemotherapy induces a complex chain of events involving reversible cell cycle arrest and cell death. In this paper we have developed a mathematical model that has the potential to describe the growth of human tumour cells and their responses to therapy. We have used the model to predict the response of cells to mitotic arrest, and have compared the results to experimental data using a human melanoma cell line exposed to the anticancer drug paclitaxel. Cells were analysed for DNA content at multiple time points by flow cytometry. An excellent correspondence was obtained between predicted and experimental data. We discuss possible extensions to the model to describe the behaviour of cell populations in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arino, O., Axelrod, D., Kimmel, M.: Mathematical Population Dynamics: Analysis of Heterogeneity, volume 2: Carcinogenesis and Cell & Tumor Growth. Wuerz Publishing Ltd, Winnipeg Canada, 1995

  2. Arino, O., Sanchez, E.: A survey of cell population dynamics. J. Theor. Med. 1, 35–51 (1997)

    MATH  Google Scholar 

  3. Baguley, B.C., Marshall, E.S., Finlay, G.J.: Short-term cultures of clinical tumor material: potential contributions to oncology research. Oncol. Res. 11, 115–24 (1999)

    Google Scholar 

  4. Beck, J.V., Arnold, K.J.: Parameter estimation in engineering and science. John Wiley, 1977

  5. Bell, G., Anderson, E.: Cell growth and division. Mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329–351 (1967)

    Google Scholar 

  6. Chiorini, G., Lupi, M.: Variability in the timing of G1/S transition. Math. Biosci. 2002. In press

  7. Chiorino, G., Metz, J.A.J., Tomasoni, D., Ubezio, P.: Desynchronization rate in cell populations: Mathematical modeling and experimental data J. Theor. Biol. 208, 185–199 (2001)

    Article  Google Scholar 

  8. Diekmann, O.: Growth, fission and the stable size distribution. J. Math. Biol. 18, 135-148 (1983)

    MATH  Google Scholar 

  9. Diekmann, O., Heijmans, H.J.A.M., Thieme, H.R.: On the stability of the cell size distribution. J. Math. Biol. 19, 227–248 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Föllinger, O.: Laplace und Fourier Transformation. Hüthig Buch Verlag, Heidelberg, 1993

  11. Hall, A.J.: Steady Size Distributions in Cell Populations. PhD thesis, Massey University, Palmerston North, New Zealand, 1991

  12. Hall, A.J., Wake, G.C.: A functional differential equation arising in the modelling of cell-growth. J. Aust. Math. Soc. Ser. 30, 424–435 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Hall, A.J., Wake, G.C.: A functional differential equation determining steady size distributions for populations of cells growing exponentially. J. Aust. Math. Soc. Ser. B 31, 344–353 (1990)

    Google Scholar 

  14. Hall, A.J., Wake, G.C., Gandar, P.W.: Steady size distributions for cells in one dimensional plant tissues. J. Math. Biol. 30(2), 101–123 (1991)

    MATH  Google Scholar 

  15. Hannsgen, K.B., Tyson, J.J.: Stability of the steady-state size distribution in a model of cell growth and division. J. Math. Biol. 22, 293–301 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Hoffmann, I., Karsenti, E.: The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle. J. Cell Sci.: Suppl. 18, 75–79 (1994)

    Google Scholar 

  17. Kreiss, H., Lorenz, J.: Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, San Diego, 1989

  18. Marshall, E.S., Holdaway, K.M., Shaw, J.H.F., Finlay, G.J., Matthews, J.H.L., Baguley, B.C.: Anticancer drug sensitivity profiles of new and established melanoma cell lines. Oncol. Res. 5, 301–309 (1993)

    MATH  Google Scholar 

  19. Montalenti, F., Sena, G., Cappella, P., Ubezio, P.: Simulating cancer-cell kinetics after drug treatment: Application to cisplatin on ovarian carcinoma. Phys. Rev. E 57(5), 5877–5887 (1999)

    Article  Google Scholar 

  20. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980

  21. Parmar, J., Marshall, E.S., Charters, G.A., Holdaway, K.M., Baguley, B.C., Shelling, A.N.: Radiation-induced cell cycle delays and p53 status of early passage melanoma lines. Oncol. Res. 12, 149–55 (2000)

    Google Scholar 

  22. Prescott, D.M.: Cell reproduction. Int. Rev. Cytol. 100, 93–128 (1987)

    Google Scholar 

  23. Priori, L., Ubezio, P.: Mathematical modelling and computer simulation of cell synchrony. Methods in cell science 18, 83–91 (1996)

    Google Scholar 

  24. Rose, W.C.: Taxol - a review of its preclinical in vivo antitumor activity. Anticancer Drugs 3, 311–321 (1992)

    Google Scholar 

  25. Rossa, B.: Asynchronous exponential growth in a size structured cell population with quiescent compartment, chapter 14, pages 183–200. Volume 2: Carcinogenesis and Cell & Tumor Growth of Arino et al. [1], 1995

  26. Sena, G., Onado, C., Cappella, P., Montalenti, F., Ubezio, P.: Measuring the complexity of cell cycle arrest and killing of drugs: Kinetics of phase-specific effects induced by taxol. Cytometry 37, 113–124 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Sinko, S., Streifer, W.: A new model for age-size structure of a population. Ecology 48, 330–335 (1967)

    Google Scholar 

  28. Smith, J.A., Martin, L.: Do cells cycle? Proc. Natl. Acad. Sci. U.S.A. 70, 1263–1267 (1973)

    Google Scholar 

  29. Steel, G.G.: Growth kinetics of tumours. Clarendon, Oxford, 1977

  30. Takahashi, M.: Theoretical basis for cell cycle analysis. II. Further studies on labelled mitosis wave method. J. Theor. Biol. 18, 195–209 (1968)

    Google Scholar 

  31. Tyson, J.J., Hannsgen, K.B.: Global asymptotic stability of the cell size distribution in probabilistic models of the cell cycle. J. Math. Biol. 61–68 (1985)

  32. Ubezio, P.: Cell cycle simulation for flow cytometry. Computer methods and programs in biomedicine. Section II. Systems and programs 31(3697), 255–266 (1990)

    Google Scholar 

  33. Ubezio, P.: Relationship between flow cytometric data and kinetic parameters. Europ. J. Histochem. 37/supp. 4, 15–28 (1993)

    Google Scholar 

  34. Ubezio, P., Filippeschi, S., Spinelli, L.: Method for kinetic analysis of drug-induced cell cycle perturbations. Cytometry 12, 119–126 (1991)

    Google Scholar 

  35. Wake, G.C., Cooper, S., Kim, H.K., van-Brunt, B.: Functional differential equations for cell-growth models with dispersion. Commun. Appl. Anal. 4, 561–574 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Watson, J.V.: Tumour growth dynamics. Br. Med. Bull. 47, 47–63 (1991)

    Google Scholar 

  37. Wilson, G.D., McNally, N.J., Dische, S., Saunders, M.I., Des Rochers, C., Lewis, A.A., Bennett, M.H.: Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry. Br. J. Cancer 58, 423–431 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Basse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basse, B., Baguley, B., Marshall, E. et al. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol. 47, 295–312 (2003). https://doi.org/10.1007/s00285-003-0203-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0203-0

Keywords or phrases

Navigation