Log in

Effects of Soluble Phosphate on Phosphate-Solubilizing Characteristics and Expression of gcd Gene in Pseudomonas frederiksbergensis JW-SD2

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Phosphate-solubilizing bacteria have the ability of solubilizing mineral phosphate in soil and promoting growth of plants, but the activity of phosphate solubilization is influenced by exogenous soluble phosphate. In the present study, the effects of soluble phosphate on the activity of phosphate solubilization, acidification of media, growth, and organic acid secretion of phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 were investigated under six levels of soluble phosphate conditions. The activity of phosphate solubilization decreased with the increase of soluble phosphate concentration, accompanying with the increase of media pH. However, the growth was promoted by adding soluble phosphate. Production of gluconic, tartaric, and oxalic acids by the strain was reduced with the increase of concentration of soluble phosphate, while acetic and pyruvic acids showed a remarkable increase. Gluconic acid predominantly produced by the strain at low levels of soluble phosphate showed that this acid was the most efficient organic acid in phosphate solubilization. Pyrroloquinoline quinone-glucose dehydrogenase gene gcd (pg5SD2) was cloned from the strain, and the expressions of pg5SD2 gene were repressed gradually with the increase of concentration of soluble phosphate. The soluble phosphate regulating the transcription of the gcd gene is speculated to underlie the regulation of the secretion of gluconic acid and subsequently the regulation of the activity of phosphate solubilization. Future research needs to consider a molecular engineering strategy to reduce the sensitivity of PSB strain to soluble phosphate via modification of the regulatory mechanism of gcd gene, which could improve the scope of PSB strains’ application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol 8(1):115–118

    Article  CAS  Google Scholar 

  2. Antelmann H, Scharf C, Hecker M (2000) Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 182(16):4478–4490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Arcand MM, Schneider KD (2006) Plant-and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Anais da Academia Brasileira de Ciências 78(4):791–807

    Article  PubMed  CAS  Google Scholar 

  4. Barber S, Walker J, Vasey E (1963) Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. J Agric Food Chem 11(3):204–207

    Article  CAS  Google Scholar 

  5. Batjes N (1997) A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling. Soil Use Manag 13(1):9–16

    Article  Google Scholar 

  6. Buch A, Archana G, Naresh Kumar G (2008) Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159(9):635–642

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young C (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41

    Article  Google Scholar 

  8. Chhonkar P, Subba-Rao N (1967) Phosphate solubilization by fungi associated with legume root nodules. Can J Microbiol 13(7):749–753

    Article  PubMed  CAS  Google Scholar 

  9. Farhat MB, Fourati A, Chouayekh H (2013) Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl Biochem Biotechnol 170(7):1738–1750

    Article  PubMed  CAS  Google Scholar 

  10. Fothergill-Gilmore LA (1986) The evolution of the glycolytic pathway. Trends Biochem Sci 11(1):47–51

    Article  CAS  Google Scholar 

  11. Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  12. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hortic 12(2):185–193

    Article  Google Scholar 

  13. Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th International Fertilizer Association Technical Conference, IFA, Paris

  14. Goldstein AH, Liu S (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat Biotechnol 5(1):72–74

    Article  CAS  Google Scholar 

  15. Huang C-T, Xu KD, McFeters GA, Stewart PS (1998) Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64(4):1526–1531

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24(4):389–395

    Article  Google Scholar 

  17. Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS (2009) An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr Microbiol 58(5):464–471

    Article  PubMed  CAS  Google Scholar 

  18. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27(1):29–43

    Article  Google Scholar 

  19. Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS, Kim YC (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Cur Microbiol 47(6):457–461. doi:10.1007/s00284-003-4068-7

    Article  CAS  Google Scholar 

  20. Le Saux A, Houdebine LM, Jolivet G (2010) Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Trans Res 19(5):923–931. doi:10.1007/s11248-010-9368-7

    Article  CAS  Google Scholar 

  21. Liu H, Wu XQ, Ren JH, Ye JR (2011) Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of China. Pedosphere 21(1):90–97. doi:10.1016/S1002-0160(10)60083-5

    Article  Google Scholar 

  22. Liu Y-G, Huang N (1998) Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16(2):175

    Article  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2_{ }^{{ - \Delta \Delta C_{T} }}\) method. Methods 25(4):402–408

  24. Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44(1):93–101. doi:10.1016/j.soilbio.2011.09.009

    Article  CAS  Google Scholar 

  25. Mikanova O, Kubat J, Simon T, Vorisek K, Randova D (1997) Influence of soluble phosphate on P-solubilizing activity of bacteria. Rostlinna Vyroba 43:421–424

    Google Scholar 

  26. Mikanova O, Novakova J (2002) Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostlinna Vyroba 48(9):397–400

    CAS  Google Scholar 

  27. Neijssel OM, Tempest DW, Postma PW, Duine JA, Jzn JF (1983) Glucose metabolism by K+-limitedKlebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS microbiol lett 20(1):35–39

    Article  CAS  Google Scholar 

  28. Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose containing media. Arch Microbiol 121(3):283–290

    Article  CAS  Google Scholar 

  29. Oubrie A, Rozeboom HJ, Kalk KH, Olsthoorn AJ, Duine JA, Dijkstra BW (1999) Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J 18(19):5187–5194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol 5(2–3):183–189

    Article  CAS  Google Scholar 

  31. Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56(2):168–174

    Article  PubMed  CAS  Google Scholar 

  32. Prágai Z, Allenby NE, O’Connor N, Dubrac S, Rapoport G, Msadek T, Harwood CR (2004) Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol 186(4):1182–1190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Prágai Z, Harwood CR (2002) Regulatory interactions between the Pho and σB-dependent general stress regulons of Bacillus subtilis. Microbiology 148(5):1593–1602

    Article  PubMed  Google Scholar 

  34. Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Biol 50(1):665–693

    Article  CAS  Google Scholar 

  35. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56(2):140–144

    Article  PubMed  CAS  Google Scholar 

  36. Vassilev N, Eichler-Lobermann B, Vassileva M (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95(4):851–859. doi:10.1007/s00253-012-4224-8

    Article  PubMed  CAS  Google Scholar 

  37. Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85(5):1287–1299

    Article  PubMed  CAS  Google Scholar 

  38. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. doi:10.1186/1471-2180-9-174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yamada M, Asaoka S, Saier M, Yamada Y (1993) Characterization of the gcd gene from Escherichia coli K-12 W3110 and regulation of its expression. J Bacteriol 175(2):568–571

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chinese Special Research Program for Forestry Sectors Beneficial to Public (201004061), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Innovation Plan for Graduate Students of Jiangsu, China (CXLX12_0544). The authors express their gratitude to Dr. De-Wei Li, The Connecticut Agricultural Experiment Station for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoqin Wu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Wu, X. & Wen, X. Effects of Soluble Phosphate on Phosphate-Solubilizing Characteristics and Expression of gcd Gene in Pseudomonas frederiksbergensis JW-SD2. Curr Microbiol 72, 198–206 (2016). https://doi.org/10.1007/s00284-015-0938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0938-z

Keywords

Navigation