Log in

Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Tanshinone I (Tan I), a diterpene quinone extracted from herbal medicine Salvia miltiorrhiza Bunge, has recently been reported to have antitumor effects. As the mechanism of its proapoptotic effects on human myeloid leukemia cells has not been extensively studied, we performed an in-depth evaluation of the effects of Tan I on apoptosis in human K562 and HL-60 cells. The results revealed that Tan I could inhibit the growth of leukemia cells and cause apoptosis in a time- and dose-dependent manner. Apoptosis was observed clearly by flow cytometry and Hoechst 33258 staining, as well as DNA fragmentation analysis. After treatment by Tan I for 48 h, the percentage of disruption of mitochondrial membrane potential (Δψm) was increased in a dose-dependent manner. Western blotting analysis demonstrated the cleavage of caspase-3 zymogen protein and a dose-dependent cleavage of poly-(ADP-ribose) polymerase. Tan I-induced apoptosis was accompanied by a significant decrease in survivin and an increase in Bax. Moreover, Tan I treatment remarkably downregulated the phosphorylation of both P85/PI3K and Akt in a time-dependent manner, and the PI3K/AKT-specific inhibitor (LY294002) mimicked the apoptosis-inducing effects of Tan I. We therefore conclude that the induction of apoptosis by Tan I in these leukemia cells is mainly related to the disruption of Δψm, the upregulation of Bax expression, and the activation of caspase-3. This process is highly correlated with the inactivation of PI3K/Akt/survivin signaling pathways. The results indicate that Tan I may serve as an effective adjunctive reagent in the treatment of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Boon H, Wong J (2004) Botanical medicine and cancer: a review of the safety and efficacy. Expert Opin Pharmacother 5:2485–2501

    Article  PubMed  Google Scholar 

  2. Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  CAS  PubMed  Google Scholar 

  3. Wang AM, Sha SH, Lesniak W, Schacht J (2003) Tanshinone (Salviae miltiorrhizae extract) preparations attenuate aminoglycoside-induced free radical formation in vitro and ototoxicity in vivo. Antimicrob Agents Chemother 47:1836–1841

    Article  CAS  PubMed  Google Scholar 

  4. Choi HS, Cho DI, Choi HK, Im SY, Ryu SY, Kim KM (2004) Molecular mechanisms of inhibitory activities of tanshinones on lipopolysaccharide-induced nitric oxide generation in RAW 264.7 cells. Arch Pharm Res 27:1233–1237

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Wei Y, Yuan S, Liu G, Lu Y, Zhang J, Wang W (2005) Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116:799–807

    Article  CAS  PubMed  Google Scholar 

  6. Yuan SL, Wei YQ, Wang XJ, **ao F, Li SF, Zhang J (2004) Growth inhibition and apoptosis induction of tanshinone II-A on human hepatocellular carcinoma cells. World J Gastroenterol 10:2024–2028

    CAS  PubMed  Google Scholar 

  7. Su CC, Chen GW, Lin JG (2008) Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med 22:613–618

    CAS  PubMed  Google Scholar 

  8. Lee CY, Sher HF, Chen HW, Liu CC, Chen CH, Lin CS, Yang PC, Tsay HS, Chen JJ (2008) Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther 7:3527–3538

    Article  CAS  PubMed  Google Scholar 

  9. Nizamutdinova IT, Lee GW, Lee JS, Cho MK, Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC, Kim HJ (2008) Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29:1885–1892

    Article  CAS  PubMed  Google Scholar 

  10. Carlo-Stella C, Lavazza C, Locatelli A, Viganò L, Gianni AM, Gianni L (2007) Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res 15:2313–2317

    Article  Google Scholar 

  11. Lunghi P, Tabilio A, Dall’Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG, Bonati A (2003) Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 17:1783–1793

    Article  CAS  PubMed  Google Scholar 

  12. Carlo-Stella C, Lavazza C, Di Nicola M, Cleris L, Longoni P, Milanesi M, Magni M, Morelli D, Gloghini A, Carbone A, Gianni AM (2006) Antitumor activity of human CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand. Hum Gene Ther 17:1225–1240

    Article  CAS  PubMed  Google Scholar 

  13. Carlo-Stella C, Di Nicola M, Turco MC, Cleris L, Lavazza C, Longoni P, Milanesi M, Magni M, Ammirante M, Leone A, Nagy Z, Gioffrè WR, Formelli F, Gianni AM (2006) The anti-human leukocyte antigen-DR monoclonal antibody 1D09C3 activates the mitochondrial cell death pathway and exerts a potent antitumor activity in lymphoma-bearing nonobese diabetic/severe combined immunodeficient mice. Cancer Res 66:1799–1808

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27:5511–5526

    Article  CAS  PubMed  Google Scholar 

  15. Seol DW (2008) Up-regulation of IAPs by PI-3K: a cell survival signal-mediated anti-apoptotic mechanism. Biochem Biophys Res Commun 377:508–511

    Article  CAS  PubMed  Google Scholar 

  16. Lindsley CW, Barnett SF, Layton ME, Bilodeau MT (2008) The PI3K/Akt pathway: recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors. Curr Cancer Drug Targets 8:7–18

    Article  CAS  PubMed  Google Scholar 

  17. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177–182

    Article  CAS  PubMed  Google Scholar 

  18. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10:13–29

    Article  CAS  PubMed  Google Scholar 

  19. Mitsiades CS, Mitsiades N, Koutsilieris M (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4:235–256

    Article  CAS  PubMed  Google Scholar 

  20. Michl P, Downward J (2005) Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Z Gastroenterol 43:1133–1139

    Article  CAS  PubMed  Google Scholar 

  21. De Santis G, Miotti S, Mazzi M, Canevari S, Tomassetti A (2009) E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene 28:1206–1217

    Article  PubMed  Google Scholar 

  22. Morgan TM, Koreckij TD, Corey E (2009) Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 9:237–249

    Article  CAS  PubMed  Google Scholar 

  23. Qian J, Zou Y, Rahman JS, Lu B, Massion PP (2009) Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung. Mol Cancer Ther 8:101–109

    Article  CAS  PubMed  Google Scholar 

  24. Shen JK, Du HP, Yang M, Wang YG, ** J (2009) Casticin induces leukemic cell death through apoptosis and mitotic catastrophe. Ann Hematol 88:743–752

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Mihara K, Song G, Tanaka H, Kimura A (2007) Interferon-gamma attenuates the survival activity of G-CSF through PI3K/Akt signaling pathway in mouse multipotent progenitor cells. Ann Hematol 86:547–555

    Article  CAS  PubMed  Google Scholar 

  26. Zhang QY, Mao JH, Liu P, Huang QH, Lu J, **e YY, Weng L, Zhang Y, Chen Q, Chen SJ, Chen Z (2009) A systems biology understanding of the synergistic effects of arsenic sulfide and imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci U S A 106:3378–3383

    Article  CAS  PubMed  Google Scholar 

  27. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA (2008) Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 42:84–105

    Article  CAS  PubMed  Google Scholar 

  28. Zhang QL, Wang L, Zhang YW, Jiang XX, Yang F, Wu WL, Janin A, Chen Z, Shen ZX, Chen SJ, Zhao WL (2009) The proteasome inhibitor bortezomib interacts synergistically with the histone deacetylase inhibitor suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells apoptosis. Leukemia 23:1507–1514

    Article  CAS  PubMed  Google Scholar 

  29. Guan L, Han B, Li J, Li Z, Huang F, Yang Y, Xu C (2009) Exposure of human leukemia NB4 cells to increasing concentrations of selenite switches the signaling from pro-survival to pro-apoptosis. Ann Hematol 88:733–742

    Article  CAS  PubMed  Google Scholar 

  30. Karp JE, Lancet JE (2004) Farnesyltransferase inhibitors (FTIs) in myeloid malignancies. Ann Hematol 83(1):S87–88

    PubMed  Google Scholar 

  31. Zhang M, Ling Y, Yang CY, Liu H, Wang R, Wu X, Ding K, Zhu F, Griffith BN, Mohammad RM, Wang S, Yang D (2007) A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. Ann Hematol 86:471–481

    Article  CAS  PubMed  Google Scholar 

  32. Jung JT, Kim DH, Kwak EK, Kim JG, Park TI, Sohn SK, Do YR, Kwon KY, Song HS, Park EH, Lee KB (2006) Clinical role of Bcl-2, Bax, or p53 overexpression in peripheral T-cell lymphomas. Ann Hematol 85:575–581

    Article  CAS  PubMed  Google Scholar 

  33. Bogner C, Sandherr M, Perker M, Weick K, Ringshausen I, Peschel C, Decker T (2006) Cyclin E but not bcl-2, bax or mcl-1 is differentially expressed in ZAP 70-positive and ZAP 70-negative B-CLL cells. Ann Hematol 85:458–462

    Article  CAS  PubMed  Google Scholar 

  34. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–32

    Article  CAS  PubMed  Google Scholar 

  35. Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53:153–197

    Article  PubMed  Google Scholar 

  36. Gianelli U, Fracchiolla NS, Cortelezzi A, Pellegrini C, Savi F, Moro A, Grimoldi MG, Deliliers GL, Coggi G, Bosari S (2007) Survivin expression in "low-risk" and "high-risk" myelodysplastic syndromes. Ann Hematol 86:185–189

    Article  CAS  PubMed  Google Scholar 

  37. Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 5:5000–5005

    Article  Google Scholar 

  38. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z (2008) Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci U S A 105:4826–4831

    Article  CAS  PubMed  Google Scholar 

  39. Zhou GB, Kang H, Wang L, Gao L, Liu P, **e J, Zhang FX, Weng XQ, Shen ZX, Chen J, Gu LJ, Yan M, Zhang DE, Chen SJ, Wang ZY, Chen Z (2007) Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 109:3441–3450

    Article  CAS  PubMed  Google Scholar 

  40. Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H, Hibi T, Tsuneki H, Kimura I (2008) Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 117:280–295

    Article  CAS  PubMed  Google Scholar 

  41. Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568:213–221

    Article  CAS  PubMed  Google Scholar 

  42. Pérez-Quintanilla D, Gómez-Ruiz S, Zizak Z, Sierra I, Prashar S, del Hierro I, Fajardo M, Juranić ZD, Kaluderović GN (2009) A new generation of anticancer drugs: mesoporous materials modified with titanocene complexes. Chemistry 15:5588–5597

    Article  PubMed  Google Scholar 

  43. Darzynkiewicz Z, Xuan H, Masaki O (2006) Detection of DNA strand breaks by flow and laser scanning cytometry in studies of apoptosis and cell proliferation (DNA replication). Meth Mol Biol 314:81–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for their insight and technical support. This work is supported by grants from the National Natural Foundation of China (no. 30570786, no. 30770782) and Guangdong Natural Science Foundation of China (no. 8151008901000128) as well as the Program for New Century Excellent Talents in University (no. NCET-06-0721).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Jun Liu or Dong-Jun Lin.

Additional information

Jia-Jun Liu, Wen-Da Liu, Hong-Zhi Yang, Yong Zhang, and Pei-Qing Liu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JJ., Liu, WD., Yang, HZ. et al. Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol 89, 1089–1097 (2010). https://doi.org/10.1007/s00277-010-0996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-0996-z

Keywords

Navigation