Log in

Gracilis and semitendinosus moment arm decreased by fascial tissue release after hamstring harvesting surgery: a key parameter to understand the peak torque obtained to a shallow angle of the knee

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

Semitendinosus and gracilis muscles whose tendons are used in surgical reconstruction of the anterior cruciate ligament maintain their contractile ability, but the peak torque angle of hamstring muscles shifted to a shallow angle postoperatively.

The goal was to quantify the influence of the myofascial structures on instantaneous moment arms of knee muscles to attempt explaining the above-mentioned post-surgical observations.

Methods

Hamstring harvesting procedures were performed by a senior orthopaedic surgeon on seven lower limbs from fresh-frozen specimens. Femoro-tibial kinematics and tendons excursion were simultaneously recorded at each step of the surgery.

Results

No significant difference was demonstrated for instantaneous moment arm of gracilis during anterior cruciate ligament surgery (84% of the maximum intact values; P ≥ 0.05). The first significant semitendinosus moment arm decrease was observed after tendon harvesting (61% of the maximum intact values; p ≤ 0.005). After hamstring harvesting, the maximum and minimum moment arm (both gracilis and semi tendinosus) shifted to a shallow angle and 90°, respectively.

Conclusion

Moment arm modifications by paratenons and the loose connective tissue release are essential to understand the peak torque obtained to a shallow angle.

Level of evidence: Basic science study, biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adachi N, Ochi M, Uchio Y et al (2003) Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Traum Surg 123:460–465. https://doi.org/10.1007/s00402-003-0572-2

    Article  Google Scholar 

  2. An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106:280–282. https://doi.org/10.1115/1.3138494

    Article  CAS  PubMed  Google Scholar 

  3. An KN, Ueba Y, Chao EY, Cooney WP, Linscheid RL (1983) Tendon excursion and moment arm of index finger muscles. J Biomech 16:419–425

    Article  CAS  Google Scholar 

  4. Ardern CL, Webster KE (2009) Knee flexor strength recovery following hamstring tendon harvest for anterior cruciate ligament reconstruction: a systematic review. Orthop Rev 1:e12. https://doi.org/10.4081/or.2009.e12

    Article  Google Scholar 

  5. Armour T, Forwell L, Litchfield R et al (2004) Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 32:1639–1643. https://doi.org/10.1177/0363546504263405

    Article  PubMed  Google Scholar 

  6. Barenius B, Webster WK, McClelland J, Feller J (2013) Hamstring tendon anterior cruciate ligament reconstruction: does gracilis tendon harvest matter? Int Orthop 37:207–212. https://doi.org/10.1007/s00264-012-1672-9

    Article  PubMed  Google Scholar 

  7. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178

    Article  CAS  Google Scholar 

  8. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21:186–196. https://doi.org/10.1016/j.gaitpost.2004.01.010

    Article  PubMed  Google Scholar 

  9. Fiorentino NM, Lin JS, Ridder KB et al (2013) Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging. J Biomech Eng 135:044501. https://doi.org/10.1115/1.4023523

    Article  PubMed  Google Scholar 

  10. Gobbi A, Mahajan V, Karnatzikos G, Nakamura N (2012) Single- versus double-bundle ACL reconstruction: is there any difference in stability and function at 3-year followup? Clin Orthop Relat Res 470:824–834. https://doi.org/10.1007/s11999-011-1940-9

    Article  PubMed  Google Scholar 

  11. Gomez T, Ratzlaff C, McConkey JP et al (1990) Semitendinosus repair augmentation of acute anterior cruciate ligament rupture. Can J Sport Sci J Can Des Sci Du Sport 15:137–142

    CAS  Google Scholar 

  12. Handl M, Držík M, Cerulli G et al (2007) Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc 15:233–241. https://doi.org/10.1007/s00167-006-0175-x

    Article  PubMed  Google Scholar 

  13. Herzog W, Read LJ (1993) Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat 182(Pt 2):213–230

    PubMed  PubMed Central  Google Scholar 

  14. Hui**g PA (2009) Epimuscular myofascial force transmission: a historical review and implications for new research. International society of biomechanics Muybridge award

  15. Hui**g PA (2007) Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis. J Electromyogr Kines 17:708–724. https://doi.org/10.1016/j.jelekin.2007.02.003

    Article  Google Scholar 

  16. Hui**g PA, Baan GC (2001) Extramuscular myofascial force transmission within the rat anterior tibial compartment: proximo-distal differences in muscle force. Acta Physiol Scand 173:297–311. https://doi.org/10.1046/j.1365-201x.2001.00911.x

    Article  CAS  PubMed  Google Scholar 

  17. Inagaki Y, Kondo E, Kitamura N et al (2013) Prospective clinical comparisons of semitendinosus versus semitendinosus and gracilis tendon autografts for anatomic double-bundle anterior cruciate ligament reconstruction. J Orthop Sci 18:754–761. https://doi.org/10.1007/s00776-013-0427-9

    Article  PubMed  Google Scholar 

  18. Kim JG, Yang SJ, Lee YS et al (2011) The effects of hamstring harvesting on outcomes in anterior cruciate ligament-reconstructed patients: a comparative study between hamstring-harvested and -unharvested patients. Arthrosc J Arthrosc Relat Surg 27:1226–1234. https://doi.org/10.1016/j.arthro.2011.05.009

    Article  Google Scholar 

  19. Kyung H-S, Kim H-J (2015) Medial patellofemoral ligament reconstruction: a comprehensive review. Knee Surg Relat Res 27:133–140. https://doi.org/10.5792/ksrr.2015.27.3.133

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lipscomb AB, Johnston RK, Snyder RB et al (1982) Evaluation of hamstring strength following use of semitendinosus and gracilis tendons to reconstruct the anterior cruciate ligament. Am J Sports Med 10:340–342. https://doi.org/10.1177/036354658201000603

    Article  CAS  PubMed  Google Scholar 

  21. Maas H, Baan GC, Hui**g PA (2001) Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34(7):927–940

    Article  CAS  Google Scholar 

  22. Maas H, Baan GC, Hui**g PA (2004) Muscle force is determined also by muscle relative position: isolated effects. J Biomech 37:99–110. https://doi.org/10.1016/s0021-9290(03)00235-5

    Article  PubMed  Google Scholar 

  23. Maeda A, Shino K, Horibe S et al (1996) Anterior cruciate ligament reconstruction with multistranded autogenous semitendinosus tendon. Am J Sports Med 24:504–509. https://doi.org/10.1177/036354659602400416

    Article  CAS  PubMed  Google Scholar 

  24. Makihara Y, Nishino A, Fukubayashi T, Kanamori A (2006) Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc 14:310–317. https://doi.org/10.1007/s00167-005-0701-2

    Article  PubMed  Google Scholar 

  25. McNeilan RJ, Everhart JS, Mescher PK et al (2018) Graft choice in isolated medial patellofemoral ligament reconstruction: a systematic review with meta-analysis of rates of recurrent instability and patient-reported outcomes for autograft, allograft, and synthetic options. Arthrosc J Arthrosc Relat Surg 34:1340–1354. https://doi.org/10.1016/j.arthro.2017.11.027

    Article  Google Scholar 

  26. Nakamura N, Horibe S, Sasaki S et al (2002) Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthrosc J Arthrosc Relat Surg 18:598–602. https://doi.org/10.1053/jars.2002.32868

    Article  Google Scholar 

  27. Nomura Y, Kuramochi R, Fukubayashi T (2015) Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 25:301–307. https://doi.org/10.1111/sms.12205

    Article  CAS  PubMed  Google Scholar 

  28. Ohkoshi Y, Inoue C, Yamane S et al (1998) Changes in muscle strength properties caused by harvesting of autogenous semitendinosus tendon for reconstruction of contralateral anterior cruciate ligament. Arthrosc J Arthrosc Relat Surg 14:580–584. https://doi.org/10.1016/s0749-8063(98)70053-2

    Article  CAS  Google Scholar 

  29. Papastergiou SG, Stergios PG, Konstantinidis GA et al (2012) Adequacy of semitendinosus tendon alone for anterior cruciate ligament reconstruction graft and prediction of hamstring graft size by evaluating simple anthropometric parameters. Anat Res Int 2012:424158. https://doi.org/10.1155/2012/424158

    Article  PubMed  Google Scholar 

  30. Pujol N, Queinnec S, Boisrenoult P et al (2013) Anatomy of the anterior cruciate ligament related to hamstring tendon grafts. A cadaveric study. Knee 20:511–514. https://doi.org/10.1016/j.knee.2012.10.006

    Article  PubMed  Google Scholar 

  31. Snoeck O, Beyer B, Feipel V et al (2014) Tendon and fascial structure contributions to knee muscle excursions and knee joint displacement. Clin Biomech 29:1070–1076. https://doi.org/10.1016/j.clinbiomech.2014.08.003

    Article  CAS  Google Scholar 

  32. Solman CG, Pagnani MJ (2003) Hamstring tendon harvesting reviewing anatomic relationships and avoiding pitfalls. Orthop Clin N Am 34:1–8. https://doi.org/10.1016/s0030-5898(02)00025-1

    Article  Google Scholar 

  33. Spoor CW, van Leeuwen JL (1992) Knee muscle moment arms from MRI and from tendon travel. J Biomech 25:201–206. https://doi.org/10.1016/0021-9290(92)90276-7

    Article  CAS  PubMed  Google Scholar 

  34. Spoor CW, van Leeuwen JL, Meskers CGM et al (1990) Estimation of instantaneous moment arms of lower-leg muscles. J Biomech 23:1247–1259. https://doi.org/10.1016/0021-9290(90)90382-d

    Article  CAS  PubMed  Google Scholar 

  35. Tadokoro K, Matsui N, Yagi M, Kuroda R, Kurosaka M, Yoshiya S (2004) Evaluation of hamstring strength and tendon regrowth after harvesting for anterior cruciate ligament reconstruction. Am J Sports Med 32:1644–1650. https://doi.org/10.1177/0363546504263152

    Article  PubMed  Google Scholar 

  36. Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui N (2003) Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. Am J Sports Med 31:521–529. https://doi.org/10.1177/03635465030310040801

    Article  Google Scholar 

  37. Van Sint Jan S (2007) Color atlas of skeletal landmark definitions. Elsevier Health Sciences

  38. Van Sint JS, Wermenbol V, Van Bogaert P, Desloovere K, Degelaen M, Dan B, Salvia P, Ortibus E, Bonnechère B, Le Borgne YA, Bontempi G, Vansummeren S, Sholukha V, Moiseev F, Rooze M (2013) A technological platform for cerebral palsy—the ICT4Rehab project. Med Sci 29:529–536. https://doi.org/10.1051/medsci/2013295017

    Article  Google Scholar 

  39. Wretenberg P, Németh G, Lamontagne M, Lundin B (1996) Passive knee muscle moment arms measured in vivo with MRI. Clin Biomech 11:439–446. https://doi.org/10.1016/s0268-0033(96)00030-7

    Article  CAS  Google Scholar 

  40. Wu G, van der Helm FCT, Veeger HEJD, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B, International Society of Biomechanics (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  CAS  Google Scholar 

  41. Yasuda K, Tsu**o J, Ohkoshi Y et al (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 23:706–714. https://doi.org/10.1177/036354659502300613

    Article  CAS  PubMed  Google Scholar 

  42. Zantop T, Ferretti M, Bell KM et al (2008) Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees. Am J Sports Med 36:2158–2166. https://doi.org/10.1177/0363546508320572

    Article  PubMed  Google Scholar 

  43. Zarins B (1985) Combined intra-articular and extra-articular reconstructions for anterior tibial subluxation. Orthop Clin North Am 16:223–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. J-L Sterckx, for his technical support.

Author information

Authors and Affiliations

Authors

Contributions

OS, BB, PS, MR, and VF contributed to the study conception and design. Material preparation, data collection, and analysis were performed by OS, BB, PS, JC, and HB. The first draft of the manuscript was written by OS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to O. Snoeck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. I declare that all authors have participated in the study and to the redaction of this manuscript and have no financial and personal relationships with other people or organizations that could inappropriately influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MOV 34707 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snoeck, O., Beyer, B., Rooze, M. et al. Gracilis and semitendinosus moment arm decreased by fascial tissue release after hamstring harvesting surgery: a key parameter to understand the peak torque obtained to a shallow angle of the knee. Surg Radiol Anat 43, 1647–1657 (2021). https://doi.org/10.1007/s00276-021-02738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-021-02738-1

Keywords

Navigation