Log in

Assessing and map** vineyard water status using a ground mobile thermal imaging platform

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Water status directly affects yield and crop quality in grapevines. Precision viticulture demands the application of new available technologies and methodologies for accurate irrigation management in vineyards. The objective of this work was the development of an on-the-go thermal imaging application for the assessment and map** of vineyard water status, building a dataset from a commercial Tempranillo (Vitis vinifera L.) vineyard over two consecutive seasons and validating it in another commercial vineyard from a different winegrowing region. Thermal imaging was performed with a thermal camera mounted in an all-terrain vehicle, moving at 5 km/h and operating at a distance from the canopy of 1.20 m. Stem water potential (Ψstem) was used for validation as the grapevine water status reference method, using a Scholander pressure chamber. Crop Water Stress Index (CWSI) and Stomatal Conductance Index (Ig) from a 4-day dataset were computed and correlated with Ψstem, delivering significant (p < 0.0001) determination coefficients R2 up to 0.71. The prediction capability of this dataset was also validated in another commercial vineyard, achieving a prediction R2 up to 0.82 (RMSE of 0.123 MPa). The predicted values of both indices were thus employed for map** vineyard water status in the second plot. These results evidence the potential applicability of on-the-go thermal imaging for assessing and map** water status in commercial vineyards required for precision viticulture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo-Opazo C, Tisseyre B, Guillaume S, Ojeda H (2008) The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agric 9:285–302

    Article  Google Scholar 

  • Acevedo-Opazo C, Tysseire B, Taylor J, Ojeda H, Guillaume S (2010) Spatial prediction model of the vine (Vitis vinifera L.) water status using high resolution ancillary information. Precision Agric 11:358–378

    Article  Google Scholar 

  • Alchanatis V, Cohen Y, Cohen S, Moller M, Sprinstin M, Meron M, Tsipris J, Saranga Y, Sela E (2010) Evaluation of different approaches for estimating and map** crop water status in cotton with thermal imaging. Precision Agric 11:27–41

    Article  Google Scholar 

  • Balafoutis AT, Koundouras S, Anastasiou E, Fountas S, Arvanitis K (2017) Life cycle assessment of two vineyards after the application of precision viticulture techniques: a case study. Sustainability 9:1997

    Article  Google Scholar 

  • Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F, Tardaguila J (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30:511–522

    Article  Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Girona J, Fereres E (2014) Map** crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agric 15:361–376

    Article  Google Scholar 

  • Bellvert J, Marsal J, Girona J, Zarco-Tejada PJ (2015) Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig Sci 33:81–93

    Article  Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Marsal J, Girona J, González-Dugo V, Fereres E (2016) Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Aust J Grape Wine Res 22:307–315

    Article  Google Scholar 

  • Choné X, Van Leeuwen C, Dubourdieu D, Gaudillère JP (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87:477–483

    Article  Google Scholar 

  • Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Alchanatis V, Prigo** A, Levi A, Soroker V (2012) Use of aerial thermal imaging to estimate water status of palm trees. Precision Agric 13:123–140

    Article  CAS  Google Scholar 

  • Cohen Y, Alchanatis V, Sela E, Saranga Y, Cohen S, Meron M, Bosak A, Tsipris J, Ostrovsky V, Orolov V et al (2015) Crop water status estimation using thermography: Multi-year model development using ground-based thermal images. Precision Agric 16:311–329

    Article  Google Scholar 

  • Cohen Y, Alchanatis V, Saranga Y, Rosenberg O, Sela E, Bosak A (2017) Map** water status based on aerial thermal imagery: comparison of methodologies for upscaling from a single leaf to commercial fields. Precision Agric 18:801–822

    Article  Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2010) Use of thermal imaging in viticulture: current application and future prospects, Methodologies and results in grapevine research. Springer

    Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Vaz M, Escalona J, Egipto R, Lopes C, Medrano H, Chaves MM (2016) Modern viticulture in southern Europe: vulnerabilities and strategies for adaptation to water scarcity. Agric Water Manag 164:5–18

    Article  Google Scholar 

  • Costa JM, Egipto R, Sánchez-Virosta A, Lopes CM, Chaves MM (2019) Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agric Water Manag 216:484–496

    Article  Google Scholar 

  • Crusiol LGT, Nanni MR, Furlanetto RH, Sibaldelli RNR, Cezar E, Mertz-Henning LM, Nepomuceno AL, Neumaier N, Farias JRB (2020) UAV-based thermal imaging in the assessment of water status of soybean plants. Int J Remote Sens 41:3243–3265

    Article  Google Scholar 

  • Diago MP, Fernández-Novales J, Gutiérrez S, Marañón M, Tardaguila J (2018) Development and validation of a new methodology to assess the vineyard water status by on-the-go near infrared spectroscopy. Front Plant Sci 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández JE (2014) Plant-based sensing to monitor water stress: applicability to commercial orchards. Agric Water Manag 142:99–109

    Article  Google Scholar 

  • Fernández-Novales J, Tardáguila J, Gutiérrez S, Paz Diago M (2019) On-The-Go VIS + SW - NIR spectroscopy as a reliable monitoring tool for grape composition within the vineyard. Molecules (Basel, Switzerland) 24:2795

    Article  Google Scholar 

  • Fuentes S, De Bei R, Pech J, Tyerman S (2012) Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig Sci 30:523–536

    Article  Google Scholar 

  • Gonzalez-Dugo, V., Zarco-Tejada, P.J., Intrigliolo, D.S., Ram\’\irez-Cuesta, J.-M., 2020. Normalization of the crop water stress index to assess the within-field spatial variability of water stress sensitivity. Precision Agriculture 1–20.

  • Grant OM, Tronina Ł, Jones HG, Chaves MM (2006) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825

    Article  PubMed  Google Scholar 

  • Grant OM, Ochagavía H, Baluja J, Diago MP, Tardáguila J (2016) Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J Hortic Sci Biotechnol 91:43–54

    Article  CAS  Google Scholar 

  • Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J (2018) Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 13:0192037

    Article  Google Scholar 

  • Harrison-Murray RS (1991) An electrical sensor for potential transpiration: principle and prototype. J Horticultic Sci 66:141–149

    Article  Google Scholar 

  • Hinkelmann K, Kempthorne O (2007) Randomized block designs, in design and analysis of experiments: introduction to experimental design. John Wiley & Sons Inc

    Google Scholar 

  • Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol 24:45–55

    Article  Google Scholar 

  • Intrigliolo DS, Castel JR (2008) Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am J Enol Vitic 59:30–38

    Article  Google Scholar 

  • Intrigliolo DS, Lakso AN (2009) Effects of light interception and canopy orientation on grapevine water status and canopy gas exchange. In: VI International Symposium on Irrigation of Horticultural Crops 889:99–104

  • Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric For Meteorol 95:139–149

    Article  Google Scholar 

  • Jones HG (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427–2436

    Article  CAS  PubMed  Google Scholar 

  • Karvatte N, Miyagi ES, de Oliveira CC, Barreto CD, Mastelaro AP, Bungenstab DJ, Alves FV (2020) Infrared thermography for microclimate assessment in agroforestry systems. Sci Total Environ 731:139252

    Article  CAS  Google Scholar 

  • Keller M (2015) The science of grapevines: anatomy and physiology. Academic Press

    Google Scholar 

  • Knipper KR, Kustas WP, Anderson MC, Alsina MM, Hain CR, Alfieri JG, Prueger JH, Gao F, McKee LG, Sanchez LA (2019) Using high-spatiotemporal thermal satellite ET retrievals for operational water use and stress monitoring in a California vineyard. Remote Sens 11:2124

    Article  Google Scholar 

  • Lee S, Wolberg G, Shin SY (1997) Scattered data interpolation with multilevel B-splines. IEEE Trans Visual Comput Graphics 3:228–244

    Article  Google Scholar 

  • Meron M, Tsipris J, Orlov V, Alchanatis V, Cohen Y (2010) Crop water stress map** for site-specific irrigation by thermal imagery and artificial reference surfaces. Precision Agric 11:148–162

    Article  Google Scholar 

  • Ortega-Farías S, Ortega-Salazar S, Poblete T, Kilic A, Allen R, Poblete-Echeverría C, Ahumada-Orellana L, Zuñiga M, Sepúlveda D (2016) Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens 8:638

    Article  Google Scholar 

  • Pagay V, Kidman CM (2019) Evaluating remotely-sensed grapevine (Vitis vinifera L.) water stress responses across a viticultural region. Agronomy 9:682

    Article  Google Scholar 

  • Petrie PR, Wang Y, Liu S, Lam S, Whitty MA, Skewes MA (2019) The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status. biosystems engineering. Biosyst Eng 179:126–139

    Article  Google Scholar 

  • Pou A, Diago MP, Medrano H, Baluja J, Tardaguila J (2014) Validation of thermal indices for water status identification in grapevine. Agric Water Manag 134:60–72

    Article  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Sepúlveda-Reyes D, Ingram B, Bardeen M, Zúñiga M, Ortega-Farías S, Poblete-Echeverría C (2016) Selecting canopy zones and thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging. Remote Sens 8:822

    Article  Google Scholar 

  • Van Leeuwen C, Trégoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 43:121–134

    Article  Google Scholar 

Download references

Acknowledgements

The work leading to these results has received funding from the European Union under grant agreement nº 737669 (VineScout project). The authors acknowledge Daniel Sepúlveda and Marioli Carrasco for their help with the measurement of the stem water potential. Special thanks to Bodegas Vivanco and Pago de Carraovejas for providing the vineyards to conduct the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Tardaguila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, S., Fernández-Novales, J., Diago, MP. et al. Assessing and map** vineyard water status using a ground mobile thermal imaging platform. Irrig Sci 39, 457–468 (2021). https://doi.org/10.1007/s00271-021-00735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-021-00735-1

Navigation