Log in

Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Reclaimed water has been extensively used as an alternative resource for irrigation, but can affect groundwater quality due to salt and nitrogen leaching. We conducted field investigations of a shallow groundwater monitoring well at the Research Center for Eco-Environmental Sciences, China, and irrigated sample sites of turf grass with reclaimed water for 8 years. The HYDRUS-1D and MODFLOW models were integrated to study the transport and distribution of electrical conductivity (ECgw) and nitrate–N (N–NO3) in the shallow groundwater under long-term reclaimed water irrigation. Model calibration and validation showed that the integrated model could simulate the fates of ECgw and N–NO3 in the shallow groundwater. Field experiments and the model simulation showed that reclaimed water irrigation can increase salinity and N–NO3 concentration in shallow groundwater and predicted, assuming the continuation of current irrigation practices, that the annual average ECgw and N–NO3 would reach a steady level of 0.72 dS m−1 and 2.18 mg L−1, respectively. Because ECgw increased with increasing irrigation water salinity and amount, there is a risk of increased salinity in the shallow groundwater under long-term reclaimed water irrigation. Under all simulation scenarios, annual average N–NO3 concentrations in the shallow groundwater at an equilibrium state did not exceed the class II groundwater quality standard (2–5 mg L−1). After proper calibration and validation, the integration of HYDRUS-1D and MODFLOW models offers an effective tool for analyzing irrigation management of low-quality water in water-scarce regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  • Brown TC, Foti R, Ramirez JA (2013) Projected freshwater withdrawals in the United States under a changing climate. Water Resour Res 49(3):1259–1276. https://doi.org/10.1002/wrcr.20076

    Article  Google Scholar 

  • Chen J, Tang C, Yu J (2006) Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. J Hydrol 326(1–4):367–378. https://doi.org/10.1016/j.jhydrol.2005.11.007

    Article  CAS  Google Scholar 

  • Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. AGR Water Manag 97(12):2001–2008. https://doi.org/10.1016/j.agwat.2010.03.008

    Article  Google Scholar 

  • Chen W, Lu S, Pan N, Jiao W (2013) Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Bei**g. Water Resour Res 49(11):7401–7410. https://doi.org/10.1002/wrcr.20550

    Article  CAS  Google Scholar 

  • Chen LL, Yuan ZY, Shao HB, Wang DX, Mu XM (2014) Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest. Sci World J 2014:1–7. https://doi.org/10.1155/2014/268157

    Article  CAS  Google Scholar 

  • Cheng DH, Liu MZ, Chen HH, He JT, He GP, Lin J (2010) The hydrogeochemical modeling for total hardness in aquifer of urban area. In: 2010 4th international conference on bioinformatics and biomedical engineering, Chengdu, China. IEEE, pp 1–4

  • Cirelli GL, Consoli S, Licciardello F, Aiello R, Giuffrida F, Leonardi C (2012) Treated municipal wastewater reuse in vegetable production. AGR Water Manag 104:163–170. https://doi.org/10.1016/j.agwat.2011.12.011

    Article  Google Scholar 

  • de Miguel A, Martinez-Hernandez V, Leal M, Gonzalez-Naranjo V, de Bustamante I, Lillo J, Martin I, Salas JJ, Palacios-Diaz MP (2013) Short-term effects of reclaimed water irrigation: Jatropha curcas L. cultivation. Ecol Eng 50:44–51. https://doi.org/10.1016/j.ecoleng.2012.06.028

    Article  Google Scholar 

  • Deng JF, Yang LX (2009) Irrigation security of reclaimed water based on water quality in Bei**g. In: 2009 3rd international conference on bioinformatics and biomedical engineering, Bei**g, China. IEEE, pp 1–4

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Wiley, New York

    Google Scholar 

  • Forkutsa I, Sommer R, Shirokova YI, Lamers JPA, Kienzler K, Tischbein B, Martius C, Vlek PLG (2009) Modeling irrigated cotton with shallow groundwater in the Aral sea basin of Uzbekistan: I. Water dynamics. Irrig SCI 27(4):331–346. https://doi.org/10.1007/s00271-009-0148-1

    Article  Google Scholar 

  • Gilabert-Alarcon C, Daessle LW, Salgado-Mendez SO, Perez-Flores MA, Knoller K, Kretzschmar TG, Stumpp C (2018) Effects of reclaimed water discharge in the Maneadero coastal aquifer, Baja California, Mexico. Appl Geochem 92:121–139. https://doi.org/10.1016/j.apgeochem.2018.03.006

    Article  CAS  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US geological survey modular groundwater model user guide to modularization concepts and the groundwater flow process. USGS, Denver

    Google Scholar 

  • Jang TI, Kim HK, Seong CH, Lee EJ, Park SW (2012) Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. AGR Water Manag 104:235–243. https://doi.org/10.1016/j.agwat.2011.12.022

    Article  Google Scholar 

  • Johnson JS, Baker LA, Fox P (1999) Geochemical transformations during artificial groundwater recharge: soil–water interactions of inorganic constituents. Water Res 33(1):196–206. https://doi.org/10.1016/S0043-1354(98)00195-X

    Article  CAS  Google Scholar 

  • Kalavrouziotis IK, Kokkinos P, Oron G, Fatone F, Bolzonella D, Vatyliotou M, Fatta-Kassinos D, Koukoulakis PH, Varnavas SP (2015) Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalin Water Treat 53(8):2015–2030. https://doi.org/10.1080/19443994.2013.860632

    Article  Google Scholar 

  • Kass A, Gavrieli I, Yechieli Y, Vengosh A, Starinsky A (2005) The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli coastal aquifer. J Hydrol 300(1–4):314–331. https://doi.org/10.1016/j.jhydrol.2004.06.013

    Article  CAS  Google Scholar 

  • Katz BG, Griffin DW, Davis JH (2009) Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators. Sci Total Environ 407(8):2872–2886. https://doi.org/10.1016/j.scitotenv.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  • Klute A (1986) Methods of soil analysis, Part 1: physical and mineralogical properties, monograph 9. American Society of Agronomy, Madison

    Google Scholar 

  • Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44(3):523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x

    Article  CAS  Google Scholar 

  • Li DS, Yang JS, Zhou J (1996) Measure and conversion of electrical conductivity of the salt affected soil extracts in the Huanghuaihai plain. Chin J Soil Sci 27(6):285–287 (in Chinese)

    Google Scholar 

  • Lian J, Luo Z, ** M (2013) Transport and fate of bacteria in SAT system recharged with recycling water. Int Biodeterior Biodegrad 76:98–101. https://doi.org/10.1016/j.ibiod.2012.06.012

    Article  CAS  Google Scholar 

  • Liu HJ, Li Y, Josef T, Zhang RH, Huang GH (2014a) Quantitative estimation of climate change effects on potential evapotranspiration in Bei**g during 1951–2010. J Geogr Sci 24(1):93–112. https://doi.org/10.1007/s11442-014-1075-5

    Article  Google Scholar 

  • Liu M, Seyf-Laye ASM, Ibrahim T, Gbandi DB, Chen H (2014b) Tracking sources of groundwater nitrate contamination using nitrogen and oxygen stable isotopes at Bei**g area, China. Environ Earth Sci 72(3):707–715

    Article  CAS  Google Scholar 

  • Liu Y, Kuang XX, Jiao JJ, Li J (2015) Numerical study of variable-density flow and transport in unsaturated–saturated porous media. J Contam Hydrol 182:117–130. https://doi.org/10.1016/j.jconhyd.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  • Lyu SD, Chen WP (2016) Soil quality assessment of urban green space under long-term reclaimed water irrigation. Environ Sci Pollut Res 23(5):4639–4649. https://doi.org/10.1007/s11356-015-5693-y

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2002) Monitoring and analysis method of water and wastewater, 4th edn. China Environmental Science Press, Bei**g, p 276 (in Chinese)

    Google Scholar 

  • Ministry of Land and Resources of the People’s Republic of China (2015) Standard for groundwater quality (DZ/T 0290–2015. Standards Press of China, Bei**g (in Chinese)

    Google Scholar 

  • Mou S, Wang H, Sun Q (1993) Simultaneous determination of the three main inorganic forms of nitrogen by ion chromatography. J Chromatogr A 640(1–2):161–165. https://doi.org/10.1016/0021-9673(93)80178-B

    Article  CAS  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Pedrero F, Maestre-Valero JF, Mounzer O, Alarcón JJ, Nicolás E (2015) Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. AGR Water Manag 146:228–237. https://doi.org/10.1016/j.agwat.2014.08.013

    Article  Google Scholar 

  • Pereira BFF, He ZL, Stoffella PJ, Melfi AJ (2011) Reclaimed wastewater: effects on citrus nutrition. AGR Water Manag 98(12):1828–1833. https://doi.org/10.1016/j.agwat.2011.06.009

    Article  Google Scholar 

  • Ramos TB, Simunek J, Gonçalves MC, Martins JC, Prazeres A, Castanheira NL, Pereira LS (2011) Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J Hydrol 407(1–4):129–144. https://doi.org/10.1016/j.jhydrol.2011.07.016

    Article  CAS  Google Scholar 

  • Sanchez-Flores R, Conner A, Kaiser RA (2016) The regulatory framework of reclaimed wastewater for potable reuse in the United States. Int J Water Resour D 32(4):536–558

    Article  Google Scholar 

  • Simunek J, Sejna M, Saito H, Sakai M, van Genuchten MTh (2008) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably-saturated media. In: Version 4.0, HYDRUS software series 3. Department of Environmental Sciences, University of California Riverside, Riverside, p 315

    Google Scholar 

  • Simunek J, van Genuchten MT, Sejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25. https://doi.org/10.2136/vzj2016.04.0033

    Article  Google Scholar 

  • Stolte J (1997) Determination of the saturated hydraulic conductivity using the constant head method. In: Stole J (ed) Manual for soil physical measurements, technical document 37. DLO Winand Staring Centre, Wageningen

    Google Scholar 

  • Sun H, Mi F, Tian MH, Peng Q (2014) Risk assessment of water supply and demand for urban greening in Bei**g. Bull Soil Water Conserv 34(5):1–6 (in Chinese)

    Google Scholar 

  • Tafteh A, Sepaskhah AR (2012) Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. AGR Water Manag 113:19–29. https://doi.org/10.1016/j.agwat.2012.06.011

    Article  Google Scholar 

  • Tran QK, Schwabe KA, Jassby D (2016) Wastewater reuse for agriculture: development of a regional water reuse decision-support model (RWRM) for cost-effective irrigation sources. Environ Sci Technol 50(17):9390–9399. https://doi.org/10.1021/acs.est.6b02073

    Article  CAS  PubMed  Google Scholar 

  • Twarakavi NKC, Simunek J, Seo S (2008) Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7(2):757–768. https://doi.org/10.2136/vzj2007.0082

    Article  Google Scholar 

  • United Nations Environment Programme (2015) Good practices for regulating wastewater treatment: legislation, policies and standards. http://unep.org/gpa/documents/publications/GoodPracticesforRegulatingWastewater.pdf. Accessed 17 Apr 2018

  • United States Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. In: Richards LA (ed) USDA handbook 60, Washington, DC

    Google Scholar 

  • van Genuchten MTh (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • van Genuchten MTh (1987) A numerical model for water and solute movement in and below the root zone, research report no. 121. US Salinity laboratory, USDA, ARS, Riverside

    Google Scholar 

  • van Genuchten MTh, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils, report no. EPA/600/2–91/065. R.S. Kerr Environmental Research Laboratory, US Environmental Protection Agency, Ada, p 85

    Google Scholar 

  • Wang YY (2011) Study on numerical simulation of groundwater recharge in plain area of Bei**g. Master’s thesis. Tsinghua University, Bei**g (in Chinese)

  • Wang XQ, Wang ZF, Qi YB, Guo H (2009) Effect of urbanization on the winter precipitation distribution in Bei**g area. Sci China Ser D 52(2):250–256. https://doi.org/10.1007/s11430-009-0019-x

    Article  Google Scholar 

  • Wang X, Daigger G, Lee DJ, Liu JX, Ren NQ, Qu JH, Liu G, Butler D (2018a) Evolving wastewater infrastructure paradigm to enhance harmony with nature. Sci Adv. https://doi.org/10.1126/sciadv.aaq0210

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Song X, Li B, Ma Y, Zhang Y, Yang L, Bu H, Holm PE (2018b) Temporal variation in groundwater hydrochemistry driven by natural and anthropogenic processes at a reclaimed water irrigation region. Hydrol Res 49:1652–1668

    Google Scholar 

  • Waterloo Hydrogeologic Inc (2006) Visual MODFLOW professional user’s manual. Waterloo Hydrogeologic Inc, Waterloo

    Google Scholar 

  • **ao Y, Gu X, Yin S, Pan X, Shao J, Cui Y (2017) Investigation of geochemical characteristics and controlling processes of groundwater in a typical long-term reclaimed water use area. Water 9(10):800

    Article  Google Scholar 

  • Xu ZF, Han GL (2009) Chemical and strontium isotope characterization of rainwater in Bei**g, China. Atmos Environ 43(12):1954–1961. https://doi.org/10.1016/j.atmosenv.2009.01.010

    Article  CAS  Google Scholar 

  • Xu P, Shao Y (2002) A salt-transport model within a land-surface scheme for studies of salinisation in irrigated areas. Environ Model Softw 17(1):39–49. https://doi.org/10.1016/S1364-8152(01)00051-2

    Article  Google Scholar 

  • Xu X, Huang G, Zhan H, Qu Z, Huang Q (2012) Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J Hydrol 412–413:170–181. https://doi.org/10.1016/j.jhydrol.2011.07.002

    Article  Google Scholar 

  • Yang ZQ (2007) Study of spatial-temporal variation characteristics of soil physicochemical properties affected by the irrigation with reclaimed water. Prog Environ Sci Technol 1:1420–1425

    CAS  Google Scholar 

  • Ye W, Wang H, Gao J, Liu H, Li Y (2014) Simulation of salt ion migration in soil under reclaimed water irrigation. J Agro Environ Sci 33(5):1007–1015 (in Chinese)

    CAS  Google Scholar 

  • Yuan XH, Teng WJ, Yang XJ, Wu JY (2009) Evapotranspiration and irrigation scheduling for three landscape ornamentals in Bei**g, China. N Z J Crop Hort 37(3):289–294. https://doi.org/10.1080/01140670909510275

    Article  CAS  Google Scholar 

  • Zhang ZY (2001) New green seedlings—Japan Euonymus. For China 8:25 (in Chinese)

    Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. In: Documentation and user’s guide, contract report SERDP-99-1. US Army Engineer Research and Development Center, Vicksburg

    Google Scholar 

  • Zhu Z, Dou J (2018) Current status of reclaimed water in China: an overview. J Water Reuse Desalin. https://doi.org/10.2166/wrd.2018.070 (in press)

    Article  Google Scholar 

  • Zhu Y, Shi LS, Lin L, Yang JZ, Ye M (2012) A fully coupled numerical modeling for regional unsaturated–saturated water flow. J Hydrol 475:188–203. https://doi.org/10.1016/j.jhydrol.2012.09.048

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (#41571130043) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei** Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by A. Ben-Gal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Chen, W., Wen, X. et al. Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig Sci 37, 35–47 (2019). https://doi.org/10.1007/s00271-018-0600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-018-0600-1

Navigation