Log in

An X-ray photoelectron and absorption spectroscopic investigation of the electronic structure of cubanite, CuFe2S3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS −II3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullin RS, Kal’chev VP, Pen’kov IN (1987) Investigation of copper minerals by NQR: crystallochemistry, electronic structure, lattice dynamics. Phys Chem Miner 14:258–263

    Article  Google Scholar 

  • Amma EL, Jeffrey GA (1961) Study of the wurtzite-type compounds. V. Structure of aluminum oxycarbide, Al2CO; a short-range wurtzite-type superstructure. J Chem Phys 34:252–259

    Article  Google Scholar 

  • Amthauer G, Bente K (1983) Mixed-valent iron in synthetic rasvumite, KFe2S3. Naturwissenschaften 70:146–147

    Article  Google Scholar 

  • Ankudinov AL, Bouldin CE, Rehr JJ, Sims J, Hung H (2002) Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys Rev B 65:104107-1–104107-11

    Article  Google Scholar 

  • Azaroff LV, Buerger MJ (1955) Refinement of the structure of cubanite, CuFe2S3. Am Miner 40:213–225

    Google Scholar 

  • Blaha P, Schwarz K, Sorantin P, Trickey SB (1990) Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun 59:399–415

    Article  Google Scholar 

  • Borshagovskii BV, Marfunin AS, Mkrtchyan AR, Stukan RA, Nadzharyan GN (1968) Investigation of iron sulfides by γ-resonance Mössbauer spectroscopy. Russ Chem Bull 17:1197–1199

    Article  Google Scholar 

  • Buckley AN, Skinner WM, Harmer SL, Pring A, Lamb RN, Fan L-J, Yang Y-w (2007) Examination of the proposition that Cu(II) can be required for charge neutrality in a sulfide lattice; Cu in tetrahedrites and sphalerite. Can J Chem 85:767–781

    Article  Google Scholar 

  • Buerger MJ (1945) The structure of cubanite, CuFe2S3, and the coordination of ferromagnetic iron. J Am Chem Soc 67:2056–2056

    Article  Google Scholar 

  • Buerger MJ (1947) The crystal structure of cubanite. Am Miner 32:415–425

    Google Scholar 

  • Clark JR, Brown GE Jr (1980) Crystal structure of rasvumite, KFe2S3. Am Miner 65:477–482

    Google Scholar 

  • Cressey G, Henderson CMB, van der Laan G (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys Chem Miner 20:111–119

    Article  Google Scholar 

  • de Groot F (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249:31–63

    Article  Google Scholar 

  • Delapalme A, Wintenberger M (1977) Etude par neutrons polarizes de l’aimantation spontanée de la cubanite. Phys Stat Sol A 44:713–716

    Article  Google Scholar 

  • Donnay G, Corliss LM, Donnay JDH, Elliott N, Hastings JM (1958) Symmetry of magnetic structures: magnetic structure of chalcopyrite. Phys Rev 112:1917–1923

    Article  Google Scholar 

  • Donovan B, Reichenbaum G (1958) Electrical properties of chalcopyrite. Br J Appl Phys 9:474–477

    Article  Google Scholar 

  • England KER, Charnock JM, Pattrick RAD, Vaughan DJ (1999) Surface oxidation studies of chalcopyrite and pyrite by glancing-angle X-ray absorption spectroscopy (REFLEXAFS). Min Mag 63:559–566

    Google Scholar 

  • Fleet ME (1970) Refinement of the crystal structure of cubanite and polymorphism of CuFe2S3. Z Krist 132:276–287

    Google Scholar 

  • Fleet ME (1972) A note on the oxidation state of iron in cubanite. Can Miner 11:901–902

    Google Scholar 

  • Fujisawa M, Suga S, Mizokawa T, Fujimori A, Sato K (1994) Electronic structure of CuFeS2 and CuAl0.9Fe0.1S2 studied by electron and optical spectroscopies. Phys Rev B 49:7155–7164

    Article  Google Scholar 

  • Gelius U (1992) High energy resolution in XPS: theory and practice—recent advances. In: Proceedings of the 7th quantitative surface analysis conference, University of Surrey, UK

  • Gibbs GV, Downs RT, Prewitt CT, Rosso KM, Ross NL, Cox DF (2005) Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of Ni–Ni bond paths for electron transport. J Phys Chem B 109:21788–21795

    Article  Google Scholar 

  • Gibbs GV, Cox DF, Rosso KM, Ross NL, Downs RT, Spackman MA (2007) Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions. J Phys Chem B 111:1923–1931

    Article  Google Scholar 

  • Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta 70:2210–2228

    Article  Google Scholar 

  • Goodenough JB, Fatseas GA (1982) Mössbauer 57Fe isomer shift as a measure of valence in mixed-valence iron sulfides. J Solid State Chem 41:1–22

    Article  Google Scholar 

  • Greenwood NN, Whitfield HJ (1968) Mössbauer effect studies on cubanite (CuFe2S3) and related iron sulphides. J Chem Soc A:1697–1699

    Google Scholar 

  • Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interf Anal 36:1564–1574

    Article  Google Scholar 

  • Gupta RP, Sen SK (1975) Calculation of multiplet structure of core p-vacancy levels. II. Phys Rev B 12:15–19

    Article  Google Scholar 

  • Hall SR, Stewart JM (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallogr B 29:579–585

    Article  Google Scholar 

  • Hamajima T, Kambara T, Gondaira KI, Oguchi T (1981) Self-consistent electronic structures of magnetic semiconductors by a discrete variational calculation. III. Chalcopyrite CuFeS2. Phys Rev B 24:3349–3353

    Article  Google Scholar 

  • Harmer SL, Pratt AR, Nesbitt WH, Fleet ME (2004) Sulfur species at chalcopyrite (CuFeS2) fracture surfaces. Am Miner 89:1026–1032

    Google Scholar 

  • Harmer SL, Pratt AR, Nesbitt HW, Fleet ME (2005) Reconstruction of fracture surfaces on bornite. Can Miner 43:1619–1630

    Article  Google Scholar 

  • Hemachandran K, Chetal AR, Joshi G (1987) X-ray absorption spectroscopic studies of chalcopyrite mineral. Phys Stat Sol B 141:441–445

    Article  Google Scholar 

  • Hesse R, Streubel P, Szargan R (2007) Product or sum: comparative tests of Voigt, and product or sum of Gaussian and Lorentzian functions in the fitting of synthetic Voigt-based X-ray photoelectron spectra. Surf Interf Anal 39:381–391

    Article  Google Scholar 

  • Hoggins JT, Steinfink H (1976) Empirical bonding relationships in metal–iron–sulfide compounds. Inorg Chem 15:1682–1685

    Article  Google Scholar 

  • Horache E, Fischer JE, Ruckman MW (1990) Resonant photoemission study of ternary transition-metal silicides. Phys Rev B 42:11079–11085

    Article  Google Scholar 

  • Hulliger F (1968) Crystal chemistry of the chalcogenides and pnictides of the transition elements. Struct Bonding 4:83–229

    Article  Google Scholar 

  • Imbert P, Wintenberger M (1967) Étude des propiétés magnétiques et des specters d’absorption par effet Mössbauer de la cubanite et de la sternbergite. Bull Soc franç Minéral Cristallogr 90:299–303

    Google Scholar 

  • Jagadeesh MS, Nagarathna HM, Montano PA, Seehra MS (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite (Cu4.5Fe1.2S4.7). Phys Rev B 23:2350–2356

    Article  Google Scholar 

  • Klauber C (2003) Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface. Surf Interf Anal 35:415–428

    Article  Google Scholar 

  • Knop O, Huang C, Woodhams FW (1970) Chalcogenides of the transition elements. VII. A Mössbauer study of pentlandite. Am Miner 55:1115–1130

    Google Scholar 

  • Kurmaev EZ, van Ek J, Ederer DL, Zhou L, Callcott TA, Perera RCC, Cherkashenko VM, Shamin SN, Trofimova VA, Bartkowski S, Neumann M, Fujimori A, Moloshag VP (1998) Experimental and theoretical investigation of the electronic structure of transition metal sulphides: CuS, FeS2 and FeCuS2. J Phys Condens Matter 10:1687–1697

    Article  Google Scholar 

  • Laajalehto K, Kartio I, Kaurila T, Laiho T, Suoninen E (1996) Investigation of copper sulfide surfaces using synchrotron radiation excited photoemission spectroscopy. In: Mathieu HJ, Reihl B, Briggs D (eds) Proceedings of ECASIA ’95, Wiley, Chichester, pp 717–720

  • Li D, Bancroft GM, Kasrai M, Fleet ME, Feng XH, Yang BX, Tan KH (1994) S K- and L-edge XANES and electronic structure of some copper sulfide minerals. Phys Chem Miner 21:317–324

    Google Scholar 

  • Marcus MA, Westphal AJ, Fakra SC (2008) Classification of Fe-bearing species from K-edge XANES data using two-parameter correlation plots. J Synchrotron Rad 15:463–468

    Article  Google Scholar 

  • Marfunin AS, Mkrtchyan AR (1967) Mössbauer spectra of Fe57 in sulfides. Geochem Int 4:980–989

    Google Scholar 

  • McCammon CA (1995) Equation of state, bonding character, and phase transition of cubanite, CuFe2S3, studied from 0 to 5 GPa. Am Miner 80:1–8

    Google Scholar 

  • McCammon CA, Zhang J, Hazen RM, Finger LW (1992) High-pressure crystal chemistry of cubanite, CuFe2S3. Am Miner 77:937–944

    Google Scholar 

  • McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    Article  Google Scholar 

  • Mikhlin Y, Tomashevich Y, Tauson V, Vyalikh D, Molodtsov S, Szargan R (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectrosc 142:83–88

    Article  Google Scholar 

  • Nakai I, Sugitani Y, Nagashima K, Niwa Y (1978) X-ray photoelectron spectroscopic study of copper minerals. J Inorg Nucl Chem 40:789–791

    Article  Google Scholar 

  • Ohsumi K, Sueno S, Nakai I, Imafuku M, Morikawa H, Kimata M, Nomura M, Shimomura O (1986) EXAFS measurement under high pressure by diamond anvil cell. J Phys Colloque 47:C8-189–C8-192

    Article  Google Scholar 

  • Pattrick RAD, Mosselmans JFW, Charnock JM, England KER, Helz GR, Garner CD, Vaughan DJ (1997) The structure of amorphous copper sulfide precipitates: an X-ray absorption study. Geochim Cosmochim Acta 61:2023–2036

    Article  Google Scholar 

  • Petiau J, Sainctavit Ph, Calas G (1988) K X-ray absorption spectra and electronic structure of chalcopyrite CuFeS2. Mater Sci Eng B 1:237–249

    Article  Google Scholar 

  • Pratt AR, Muir IJ, Nesbitt HW (1994) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta 58:827–841

    Article  Google Scholar 

  • Pratt AR, Franzreb K, McIntyre NS (1998) Imaging of oxidized mineral surfaces. Surf Interf Anal 26:869–871

    Article  Google Scholar 

  • Ravel B (2001) ATOMS: crystallography for the X-ray absorption spectroscopist. J Synchrotron Rad 8:314–316

    Article  Google Scholar 

  • Reiff WM, Grey IE, Fan A, Eliezer Z, Steinfink H (1975) The oxidation state of iron in some Ba–Fe–S phases: a Mössbauer and electrical resistivity investigation of Ba2FeS3, Ba7Fe6S14, Ba6Fe8S15, BaFe2S3, and Ba9Fe16S32. J Solid State Chem 13:32–40

    Article  Google Scholar 

  • Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun 147:71–76

    Article  Google Scholar 

  • Shuey RT (1975) Semiconducting ore minerals. Elsevier Scientific, Amsterdam, p 415

    Google Scholar 

  • Sleight AW, Gillson JL (1973) Electrical resistivity of cubanite: CuFe2S3. J Solid State Chem 8:29–30

    Article  Google Scholar 

  • Szymanski JT (1974) A refinement of the structure of cubanite, CuFe2S3. Z Krist 140:218–239

    Article  Google Scholar 

  • Telkes M (1950) Thermoelectric power and electrical resistivity of minerals. Am Miner 35:536–555

    Google Scholar 

  • Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2–10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy. Geochim Cosmochim Acta 67:2137–2146

    Article  Google Scholar 

  • Tossell JA, Urch DS, Vaughan DJ, Wiech G (1982) The electronic structure of CuFeS2, chalcopyrite, from X-ray emission and X-ray photoelectron spectroscopy and calculations. J Chem Phys 77:77–82

    Article  Google Scholar 

  • Townsend MJ, Horwood JL, Gosselin JR (1973) On the weak ferromagnetism of orthorhombic CuFe2S3. Can J Phys 51:2162–2165

    Google Scholar 

  • Tseng P-C, Chen C-C, Dann T-E, Chung S-C, Chen CT, Tsang K-L (1998) A unique high-performance wide-range (10–1500 eV) spherical grating monochromator beamline. J Synchrotron Rad 5:723–725

    Article  Google Scholar 

  • van der Laan G, Kirkman IW (1992) The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J Phys Condens Matter 4:4189–4204

    Article  Google Scholar 

  • van der Laan G, Pattrick RAD, Henderson CMB, Vaughan DJ (1992) Oxidation state variations in copper minerals studied with Cu 2p X-ray absorption spectroscopy. J Phys Chem Solids 53:1185–1190

    Article  Google Scholar 

  • Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. In: Proceedings of 24th international geology congress, Montreal, Section 14, Perrault G, Nickel EH, Harris DC (Conv), pp 158–167

  • von Oertzen GU, Skinner WM, Nesbitt HW (2006) Ab initio and XPS studies of pyrite (100) surface states. Radiat Phys Chem 75:1855–1860

    Article  Google Scholar 

  • Wasinger EC, de Groot FMF, Hedman B, Hodgson KO, Solomon EI (2003) L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of different orbital covalency. J Am Chem Soc 125:12894–12906

    Article  Google Scholar 

  • Wintenberger M, Lambert-Andron B, Roudaut E (1974) Détermination de la structure magnétique de la cubanite par diffraction neutronique sur un monocristal. Phys Stat Sol A 26:147–154

    Article  Google Scholar 

  • Wintenberger M, André G, Perrin M, Garcin C, Imbert P (1990) Magnetic structure and Mössbauer data of sternbergite AgFe2S3, and intermediate valency Fe compound. J Magn Magn Mater 87:123–129

    Article  Google Scholar 

  • Wintenberger M, André G, Garcin C, Imbert P, Jéhanno G, Fouquet Y, Wafik A (1994) Intermediate valency, Verwey transition and magnetic structures of a new mineral, Cu1−εFe3+εS4, resulting from the ageing of isocubanite. J Magn Magn Mater 132:31–45

    Article  Google Scholar 

  • Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atomic Data Nuclear Data Tables 32:1–155

    Article  Google Scholar 

  • Yin Q, Kelsall GH, Vaughan DJ, England KER (1995) Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2). Geochim Cosmochim Acta 59:1091–1100

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Synchrotron Research Program, which was funded by the Commonwealth of Australia under the Major National Research Facilities Program. The research was partly undertaken on the soft X-ray beam-line (BL14ID) at the Australian Synchrotron, Victoria, Australia. The IWRI author acknowledges funding support for the Australian Mineral Science Research Institute by AMIRA International, the Australian Research Council, and the South Australian Government. The authors are grateful to Bruce Cowie for assistance in the use of BL14D at the AS, Yaw-wen Yang and Jyh-Fu Lee for access to BL24A and BL17C at the NSRRC, and to Allan Pring, Museum of South Australia for the massive cubanite and chalcopyrite specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan N. Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, S.W., Buckley, A.N., Skinner, W.M. et al. An X-ray photoelectron and absorption spectroscopic investigation of the electronic structure of cubanite, CuFe2S3 . Phys Chem Minerals 37, 389–405 (2010). https://doi.org/10.1007/s00269-009-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0341-z

Keywords

Navigation