Log in

Cementless femoral stem fixation and leg-length discrepancy after total hip arthroplasty in different proximal femoral morphological types

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Leg-length changes at total hip arthroplasty (THA) may result from too proximal position of the femoral component, i.e. not being sunk deep enough into the femoral canal due to the size and shape of both medullary canal and implant. Some femoral implants are designed to achieve such fixation in the mediolateral dimension, while others also engage the bone anteroposteriorly. Our aim was to examine the relationship between proximal femoral morphology, osseointegration and leg-length equalization at THA. We asked whether the Dorr classification, femoral cortical index and canal flare index on preoperative radiographs had significant impact on THA aseptic loosening rates and post-operative leg-length discrepancy (LLD).

Methods

Literature review included original articles on proximal femoral morphology with post-operative LLD and other clinical outcomes of THA, published in the last decade. Case reports and biomechanical studies without clinical data were excluded.

Results

Higher femoral cortical index and/or canal flare index (corresponding to the Dorr type A) increases the risk of leg lengthening at THA. This is particularly notable in femoral stems with metaphyseal fixation, where high canal flare index has also been linked to osseointegration failure and implant loosening. On the other hand, lower canal flare index (corresponding to the Dorr type C) is more prevalent in the elderly population and increases late periprosthetic fracture rates and stress shielding. Even the most commonly used cementless femoral stems cannot offer optimal fit to intra-/extramedullary geometry or offset restoration in up to 30% of clinical cases.

Conclusions

Femoral morphology can have significant impact on post-operative LLD and osseointegration of cementless THA. Quantitative measurements of the proximal femoral canal may improve the choice of a particular implant and fixation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O'Brien S, Kernohan G, Fitzpatrick C, Hill J, Beverland D (2010) Perception of imposed leg length inequality in normal subjects. Hip Int 20(4):505–511

    Article  Google Scholar 

  2. Ollivier M, Parratte S, Galland A, Lunebourg A, Flecher X, Argenson JN (2015) Titanium-titanium modular neck for primary THA. Result of a prospective series of 170 cemented THA with a minimum follow-up of 5 years. Orthop Traumatol Surg Res 101(2):137–142

    Article  CAS  Google Scholar 

  3. Fujita K, Kabata T, Ka**o Y, Tsuchiya H (2020) Optimizing leg length correction in total hip arthroplasty. Int Orthop 44(3):437–443

    Article  Google Scholar 

  4. Parvizi J, Sharkey PF, Bissett GA, Rothman RH, Hozack WJ (2003) Surgical treatment of limb-length discrepancy following total hip arthroplasty. J Bone Joint Surg Am 85(12):2310–2317

    Article  Google Scholar 

  5. Kim C, Nevitt M, Guermazi A, Niu J, Clancy M, Tolstykh I, Jungmann PM, Lane NE, Segal NA, Harvey WF, Lewis CE, Felson DT (2018) Brief report: leg length inequality and hip osteoarthritis in the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Rheumatol 70(10):1572–1576

    Article  Google Scholar 

  6. Budenberg S, Redmond A, White D, Grainger A, O'Connor P, Stone MH, Stewart TD (2012) Contact surface motion paths associated with leg length inequality following unilateral total hip replacement. Proc Inst Mech Eng H 226(12):968–974

    Article  Google Scholar 

  7. Röder C, Vogel R, Burri L, Dietrich D, Staub LP (2012) Total hip arthroplasty: leg length inequality impairs functional outcomes and patient satisfaction. BMC Musculoskelet Disord 13:95

    Article  Google Scholar 

  8. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102(1 Suppl):S9–S20

    Article  CAS  Google Scholar 

  9. Carmona M, Tzioupis C, LiArno S, Faizan A, Argenson JN, Ollivier M (2019) Upper femur anatomy depends on age and gender: a three-dimensional computed tomography comparative bone morphometric analysis of 628 healthy patients' hips. J Arthroplast 34(10):2487–2493

    Article  Google Scholar 

  10. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14(3):231–242

    Article  CAS  Google Scholar 

  11. Park CW, Eun HJ, Oh SH, Kim HJ, Lim SJ, Park YS (2019) Femoral stem survivorship in Dorr type a femurs after total hip arthroplasty using a cementless tapered wedge stem: a matched comparative study with type B femurs. J Arthroplast 34(3):527–533

    Article  Google Scholar 

  12. Merle C, Waldstein W, Gregory JS, Goodyear SR, Aspden RM, Aldinger PR, Murray DW, Gill HS (2014) How many different types of femora are there in primary hip osteoarthritis? An active shape modeling study. J Orthop Res 32(3):413–422

    Article  CAS  Google Scholar 

  13. Wegrzyn J, Roux JP, Loriau C, Bonin N, Pibarot V (2018) The tridimensional geometry of the proximal femur should determine the design of cementless femoral stem in total hip arthroplasty. Int Orthop 42(10):2329–2334

    Article  Google Scholar 

  14. Miettinen SS, Mäkinen TJ, Kostensalo I, Mäkelä K, Huhtala H, Kettunen JS, Remes V (2016) Risk factors for intraoperative calcar fracture in cementless total hip arthroplasty. Acta Orthop 87(2):113–119

    Article  Google Scholar 

  15. Feola M, Rao C, Tempesta V, Gasbarra E, Tarantino U (2015) Femoral cortical index: an indicator of poor bone quality in patient with hip fracture. Aging Clin Exp Res 27(Suppl 1):S45–S50

    Article  Google Scholar 

  16. Goldberg T, Torres A, Bush JW, Mahometa MJ (2019) Quantification of the Dorr classification system. Orthopaedic proceedings 101-B, no. SUPP 4

  17. Boese CK, Dargel J, Jostmeier J, Eysel P, Frink M, Lechler P (2016) Agreement between proximal femoral geometry and component design in total hip arthroplasty: implications for implant choice. J Arthroplast 31(8):1842–1848

    Article  Google Scholar 

  18. Bergschmidt P, Bader R, Finze S, Gankovych A, Kundt G, Mittelmeier W (2010) Cementless total hip replacement: a prospective clinical study of the early functional and radiological outcomes of three different hip stems. Arch Orthop Trauma Surg 130(1):125–133

    Article  Google Scholar 

  19. Takigami I, Ito Y, Matsumoto K, Terabayashi N, Miyagawa T, Akiyama H (2017) Mid-term results of the SL-PLUS femoral prosthesis the influence of femoral bone type. Bull Hosp Jt Dis 75(2):128–133

    Google Scholar 

  20. Kang JS, Ko SH, Na Y, Youn YH (2019) Clinical and radiological outcomes of rectangular tapered cementless stem according to proximal femoral geometry in elderly Asian patients. Hip Pelvis 31(4):224–231

    Article  Google Scholar 

  21. Ishii S, Homma Y, Baba T, Ozaki Y, Matsumoto M, Kaneko K (2016) Does the canal fill ratio and femoral morphology of Asian females influence early radiographic outcomes of total hip arthroplasty with an uncemented proximally coated, tapered-wedge stem? J Arthroplast 31(7):1524–1528

    Article  Google Scholar 

  22. Cooper HJ, Jacob AP, Rodriguez JA (2011) Distal fixation of proximally coated tapered stems may predispose to a failure of osteointegration. J Arthroplast 26(6 Suppl):78–83

    Article  Google Scholar 

  23. Warth LC, Grant TW, Naveen NB, Deckard ER, Ziemba-Davis M, Meneghini RM (2020) Inadequate metadiaphyseal fill of a modern taper-wedge stem increases subsidence and risk of aseptic loosening: technique and distal canal fill matter! J Arthroplast S0883-5403(20):30167–30164

    Google Scholar 

  24. Narayanan R, Elbuluk AM, Chen KK, Eftekhary N, Zuckerman JD, Deshmukh AJ (2020) Does femoral morphology and stem alignment influence outcomes of cementless total hip arthroplasty with proximally coated double-tapered titanium stems? Hip Int:1120700019891702

  25. Bigart KC, Nahhas CR, Ruzich GP, Culvern CN, Salzano MB, Della Valle CJ, Nam D (2020) Does femoral morphology predict the risk of periprosthetic fracture after cementless total hip arthroplasty? J Arthroplast S0883-5403(20):30209–30206

    Google Scholar 

  26. Busato TS, Barbosa GMR, Velho AEK, Matioski Filho GR, Godoi LD, Capriotti JRV (2019) Is the size of the currently available implants for total hip arthroplasty adequate for our population? Rev Bras Ortop (Sao Paulo) 54(4):447–452

    Article  Google Scholar 

  27. Griffiths SZ, Post ZD, Buxbaum EJ, Paziuk TM, Orozco FR, Ong AC, Ponzio DY (2020) Predictors of perioperative Vancouver B periprosthetic femoral fractures associated with the direct anterior approach to total hip arthroplasty. J Arthroplast 35(5):1407–1411

    Article  Google Scholar 

  28. Tanzer M, Graves SE, Peng A, Shimmin AJ (2018) Is cemented or cementless femoral stem fixation more durable in patients older than 75 years of age? A comparison of the best-performing stems. Clin Orthop Relat Res 476(7):1428–1437

    Article  Google Scholar 

  29. Scheerlinck T, de Mey J, Deklerck R (2009) The cement mantle of femoral hip implants is more influenced by stem-broach sizing than by shape: an in vitro CT analysis of straight Charnley-Kerboul and anatomic Lubinus SPII stems. Arch Orthop Trauma Surg 129(11):1473–1481

    Article  Google Scholar 

  30. Nossa JM, Muñoz JM, Riveros EA, Rueda G, Márquez D, Pérez J (2018) Leg length discrepancy after total hip arthroplasty: comparison of 3 intraoperative measurement methods. Hip Int 28(3):254–258

    Article  Google Scholar 

  31. Herisson O, Felden A, Hamadouche M, Anract P, Biau DJ (2016) Validity and reliability of intraoperative radiographs to assess leg length during total hip arthroplasty: correlation and reproducibility of anatomic distances. J Arthroplast 31(12):2784–2788

    Article  Google Scholar 

  32. Keršič M, Dolinar D, Antolič V, Mavčič B (2014) The impact of leg length discrepancy on clinical outcome of total hip arthroplasty: comparison of four measurement methods. J Arthroplast 29(1):137–141

    Article  Google Scholar 

  33. Fujimaki H, Inaba Y, Kobayashi N, Tezuka T, Hirata Y, Saito T (2013) Leg length discrepancy and lower limb alignment after total hip arthroplasty in unilateral hip osteoarthritis patients. J Orthop Sci 18(6):969–976

    Article  Google Scholar 

  34. Sariali E, Knaffo Y (2017) Three-dimensional analysis of the proximal anterior femoral flare and torsion. Anatomic bases for metaphyseally fixed short stems design. Int Orthop 41(10):2017–2023

    Article  Google Scholar 

  35. Innmann MM, Spier K, Streit MR, Aldinger PR, Bruckner T, Gotterbarm T, Merle C (2018) Comparative analysis of the reconstruction of individual hip anatomy using 3 different cementless stem designs in patients with primary hip osteoarthritis. J Arthroplast 33(4):1126–1132

    Article  Google Scholar 

  36. Al-Amiry B, Mahmood S, Krupic F, Sayed-Noor A (2017) Leg lengthening and femoral-offset reduction after total hip arthroplasty: where is the problem - stem or cup positioning? Acta Radiol 58(9):1125–1131

    Article  Google Scholar 

  37. Lim YW, Huddleston JI 3rd, Goodman SB, Maloney WJ, Amanatullah DF (2018) Proximal femoral shape changes the risk of a leg length discrepancy after primary total hip arthroplasty. J Arthroplast 33(12):3699–3703

    Article  Google Scholar 

  38. Brumat P, Pompe B, Antolič V, Mavčič B (2018) The impact of canal flare index on leg length discrepancy after total hip arthroplasty. Arch Orthop Trauma Surg 138(1):123–129

    Article  Google Scholar 

  39. Al-Amiry B, Pantelakis G, Mahmood S, Kadum B, Brismar TB, Sayed-Noor AS (2019) Does body mass index affect restoration of femoral offset, leg length and cup positioning after total hip arthroplasty? A prospective cohort study. BMC Musculoskelet Disord 20(1):422

    Article  Google Scholar 

  40. Kishimoto Y, Suda H, Kishi T, Takahashi T (2020) A low-volume surgeon is an independent risk factor for leg length discrepancy after primary total hip arthroplasty: a case-control study. Int Orthop 44(3):445–451

    Article  Google Scholar 

  41. Forde B, Engeln K, Bedair H, Bene N, Talmo C, Nandif S (2018) Restoring femoral offset is the most important technical factor in preventing total hip arthroplasty dislocation. J Orthop 15(1):131–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final submitted manuscript: Blaž Mavčič contributed analysis, investigation, data curation, visualization and writing and Vane Antolič contributed conceptualization, analysis, resources, writing and supervision of the manuscript.

Corresponding author

Correspondence to Blaž Mavčič.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavčič, B., Antolič, V. Cementless femoral stem fixation and leg-length discrepancy after total hip arthroplasty in different proximal femoral morphological types. International Orthopaedics (SICOT) 45, 891–896 (2021). https://doi.org/10.1007/s00264-020-04671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04671-1

Keywords

Navigation