Log in

Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Wear debris particle-induced osteolysis and subsequent aseptic loosening is one of the major causes of failure of total joint replacement. The purpose of this study was to investigate the effect of titanium implant material and inflammatory cytokines on human synovial cells and the development to osteolysis and aseptic loosening.

Methods

This study investigated the effect of titanium implant material on the ECM-degraded MMP-2 in human synovial cells and analyzed the contribution of synovial cells in osteolysis and aseptic loosening.

Results

When human synovial cells are exposed to titanium materials, MMP-2 activity is induced by 1.72 ± 0.14-fold with Ti disc and 3.95 ± 0.10-fold with Ti particles, compared with that of the controls, respectively. Inflammatory cytokines TNFα and IL-1β are also shown to induce MMP-2 activity by 3.65 ± 0.28-fold and 6.76 ± 0.28-fold, respectively. A combination of Ti particles and cytokines induces MMP-2 activities to a higher level (10.54 ± 0.45-fold). Inhibitors of various signal pathways involved in MMP-2 reverse Ti particle-induced MMP-2 activities.

Conclusions

Synovial cells surrounding the bone–prosthesis interface may contribute to production of MMP-2, and NFκB inhibitors may be explored as potential therapeutics to alleviate wear debris-induced osteolysis and aseptic loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, Karrholm J, Garellick G, Havelin LI, Furnes O, Malchau H, Lau E (2007) Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 89:144–151

    Article  PubMed  Google Scholar 

  2. Cowan RW, Mak IWY, Colterjohn N, Singh G, Ghert M (2009) Collagenase expression and activity in the stromal cells from giant cell tumour of bone. Bone 44:865–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Patrick S, Christian S, Andreas F, Arnd S, Oliver B, Peter EM, Volkmar J, Andreas H (2012) Application and survival curve of total hip arthroplasties: a systematic comparative analysis using worldwide hip arthroplasty registers. Int Orthop 36:2197–2203

    Article  Google Scholar 

  4. Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ (2004) Reasons for revision hip surgery: a retrospective review. Clin Orthop Relat Res 429:188–192

    Article  PubMed  Google Scholar 

  5. Wooley PH, Schwarz EM (2004) Aseptic loosening. Gene Ther 11:402–407

    Article  CAS  PubMed  Google Scholar 

  6. Jean PC, Jacques HC (2011) Total hip arthroplasty, state of the art for the 21st century. Int Orthop 35:149–150

    Article  Google Scholar 

  7. Wang ML, Sharkey PF, Tuan RS (2004) Particle bioreactivity and wear-mediated osteolysis. J Arthroplasty 19:1028–1038

    Article  PubMed  Google Scholar 

  8. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CLM, Ostlere S, Athanasou N, Gill HS, Murray DW (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90:847–851

    Article  CAS  PubMed  Google Scholar 

  9. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519

    Article  PubMed  Google Scholar 

  10. Horowitz SM, Gonzales JB (1999) Inflammatory response to implant particulates in a macrophage/osteoblast co-culture model. Calcified Tissue Int 59:392–396

    Article  Google Scholar 

  11. Kim KJ, Rubash HE, Wilson SC, Dantonio JA, McClain EJ (1993) A histologic and biochemical comparison of the interface tissues in cementless and cemented hip prostheses. Clin Orthop Relat Res 287:142–152

    PubMed  Google Scholar 

  12. Yao JL, Glant TT, Lark MW, Mikecz K, Jacobs JJ, Hutchinson NI, Hoerrner LA, Kuettner KE, Galante JO (1995) The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J Bone Miner Res 10:1417–1427

    Article  CAS  PubMed  Google Scholar 

  13. Goldring SR, Clark CR, Wright TM (1993) The problem in total joint arthroplasty: aseptic loosening. J Bone Joint Surg Am 75:799–801

    CAS  PubMed  Google Scholar 

  14. Koreny T, Tunyogi-Csapo M, Gal I, Vermes C, Jacobs JJ, Glant TT (2006) The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum 54:3221–3232

    Article  CAS  PubMed  Google Scholar 

  15. Valles G, Gonzalez-Melendi P, Gonzalez-Carrasco JL, Saldana L, Sanchez-Sabate E, Munuera L, Vilaboa N (2006) Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 27:5199–5211

    Article  CAS  PubMed  Google Scholar 

  16. Krane SM, Inada M (2008) Matrix metalloproteinases and bone. Bone 43:7–18

    Article  CAS  PubMed  Google Scholar 

  17. Allan JA, Docherty AJP, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G (2004) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J 309:299–306

    Google Scholar 

  18. Creemers LB, Jansen IDC, Docherty AJP, Reynolds JJ, Beertsen W, Everts V (1998) Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue. Matrix Biol 17:35–46

    Article  CAS  PubMed  Google Scholar 

  19. Nakashima Y, Sun DH, Maloney WJ, Goodman SB, Schurman DJ, Smith RL (1998) Induction of matrix metalloproteinase expression in human macrophages by orthopaedic particulate debris in vitro. J Bone Joint Surg Br 80:694–700

    Article  CAS  PubMed  Google Scholar 

  20. Seguin CA, Pilliar RM, Madri JA, Kandel RA (2008) TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine 33:356–365

    Article  PubMed  Google Scholar 

  21. Overall CM, Wrana JL, Sodek J (1991) Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta1 in human fibroblasts. J Biol Chem 266:14064–14071

    CAS  PubMed  Google Scholar 

  22. Mitchell B, Nicholas MD, Alain P, David JZ, Olga LH, John A (2012) Long-term follow-up and metal ion trend of patients with metal-on-metal total hip arthroplasty. Int Orthop 36:1807–1812

    Article  Google Scholar 

  23. Takagi M, Konttinen YT, Santavirta S, Kangaspunta P, Suda A, Rokkanen P (1995) Cathepsin-G and Alpha-1-antichymotrypsin in the local host reaction to loosening of total hip prostheses. J Bone Joint Surg Am 77A:16–25

    Google Scholar 

  24. Zhang YJ, Dong JQ, He PY, Li WD, Zhang Q, Li N, Sun TZ (2012) Genistein inhibit cytokines or growth factor-induced proliferation and transformation phenotype in fibroblast-like synoviocytes of rheumatoid arthritis. Inflammation 35:377–387

    Article  CAS  PubMed  Google Scholar 

  25. Choi MG, Koh HS, Kluess D, O’Connor D, Mathur A, Truskey GA, Rubin J, Zhou D, Sung KLP (2005) Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc Natl Acad Sci USA 102:4578–4583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wang YQ, Yang L, Zhang J, Xue RY, Tang ZY, Huang W, Jiang DM, Tang XY, Chen P, Sung KLP (2010) Differential MMP-2 activity induced by mechanical compression and inflammatory factors in human synoviocytes. Mol Cell Biomech 7:105–114

    PubMed  Google Scholar 

  27. Yan Y, Singh GK, Zhang FF, Wang P, Liu WQ, Zhong L, Yang L (2012) Comparative study of normal and rheumatoid arthritis fibroblast-like synoviocytes proliferation under cyclic mechanical stretch: role of prostaglandin E-2. Connect Tissue Res 53:246–254

    Article  CAS  PubMed  Google Scholar 

  28. Taki N, Tatro JM, Lowe R, Goldberg VM, Greenfield EM (2007) Comparison of the roles of IL-1, IL-6, and TNF alpha in cell culture and murine models of aseptic loosening. Bone 40:1276–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sabokbar A, Rushton N (2005) Role of inflammatory mediators and adhesion molecules in the pathogenesis of aseptic loosening in total hip arthroplasties. J Arthroplasty 10:810–816

    Article  Google Scholar 

  30. Herbein G, Varin A, Fulop T (2006) NF-kappaB, AP-1, zinc-deficiency and aging. Biogerontology 7:409–419

    Article  CAS  PubMed  Google Scholar 

  31. Michael C, Mathias B (2009) Periprosthetic fractures of the femur. Orthopedics 32:665–667

    Article  Google Scholar 

  32. Horowitz SM, Doty SB, Lane JM, Burstein AH (1993) Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. J Bone Joint Surg Am 75A:802–813

    Google Scholar 

  33. Jasty M, Smith E (1992) Wear particles of total joint replacements and their role in periprosthetic osteolysis. Curr Opin Rheumatol 4:204–209

    Article  CAS  PubMed  Google Scholar 

  34. Zhou D, Lee HS, Villarreal F, Teng A, Lu E, Reynolds S, Qin C, Smith J, Sung KLP (2005) Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res 23:949–957

    Article  CAS  PubMed  Google Scholar 

  35. Ishiguro N, Ito T, Kurokouchi K, Iwahori Y, Nagaya I, Hasegawa Y, Iwata H (1996) mRNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in interface tissue around implants in loosening total hip arthroplasty. J Biomed Mater Res 32:611–617

    Article  CAS  PubMed  Google Scholar 

  36. Santavirta S, Takagi M, Konttinen YJ, Sorsa T, Suda A (1996) Inhibitory effect of cephalothin on matrix metalloproteinase activity around loose hip prostheses. Antimicrob Agents Ch 40:244–246

    CAS  Google Scholar 

  37. Fridman R, Toth M, Pena D, Mobashery S (1995) Activation of progelatinase-B (MMP-9) by gelatinase-A (MMP-2). Cancer Res 55:2548–2555

    CAS  PubMed  Google Scholar 

  38. Knauper V, Will H, LopezOtin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation - Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem 271:17124–17131

    Article  CAS  PubMed  Google Scholar 

  39. Mulhall KJ, Curtin WA, Given HF (2002) Inhibition of polymethylmethacrylate particle-induced monocyte activation and IL-1 beta and TNF-alpha expression by the antioxidant agent N-acetylcysteine. Acta Orthop Scand 73:206–212

    Article  PubMed  Google Scholar 

  40. Mulhall KJ, Curtin WA, Given HF (2003) Comparison of different anti-inflammatory agents in suppressing the monocyte response to orthopedic particles. Orthopedics 26:1219–1223

    PubMed  Google Scholar 

  41. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  42. Murphy G, Nagase H (2008) Progress in matrix metalloproteinase research. Mol Aspects Med 29:290–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tang ZY, Yang L, Xue RY, Zhang J, Wang YQ, Chen PC, Sung KLP (2009) Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: Involvement of the p65 subunit of NF-kappa B. Wound Repair Regen 17:709–716

    Article  PubMed  Google Scholar 

  44. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a research grant from the Natural Science Foundation of China (31070875 to WH).

Declaration of interests

The authors declare no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Additional information

Chunfeng Fu and **g **e contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., **e, J., Hu, N. et al. Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells. International Orthopaedics (SICOT) 38, 1091–1098 (2014). https://doi.org/10.1007/s00264-013-2190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2190-0

Keywords

Navigation