Log in

Expansion of cytotoxic natural killer cells in multiple myeloma patients using K562 cells expressing OX40 ligand and membrane-bound IL-18 and IL-21

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Natural killer (NK) cell-based immunotherapy is a promising treatment approach for multiple myeloma (MM), but obtaining a sufficient number of activated NK cells remains challenging. Here, we report an improved method to generate ex vivo expanded NK (eNK) cells from MM patients based on genetic engineering of K562 cells to express OX40 ligand and membrane-bound (mb) IL-18 and IL-21.

Methods

K562-OX40L-mbIL-18/-21 cells were generated by transducing K562-OX40L cells with a lentiviral vector encoding mbIL-18 and mbIL-21, and these were used as feeder cells to expand NK cells from peripheral blood mononuclear cells of healthy donors (HDs) and MM patients in the presence of IL-2/IL-15. Purity, expansion rate, receptor expression, and functions of eNK cells were determined over four weeks of culture.

Results

NK cell expansion was enhanced by short exposure of soluble IL-18 and IL-21 with K562-OX40L cells. Co-culture of NK cells with K562-OX40L-mbIL-18/-21 cells resulted in remarkable expansion of NK cells from HDs (9,860-fold) and MM patients (4,929-fold) over the 28-day culture period. Moreover, eNK cells showed increased expression of major activation markers and enhanced cytotoxicity towards target K562, U266, and RPMI8226 cells.

Conclusions

Our data suggest that genetically engineered K562 cells expressing OX40L, mbIL-18, and mbIL-21 improve the expansion of NK cells, increase activation signals, and enhance their cytolytic activity towards MM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057. https://doi.org/10.1182/blood-2004-07-2974

    Article  CAS  PubMed  Google Scholar 

  2. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. https://doi.org/10.1126/science.1068440

    Article  PubMed  Google Scholar 

  3. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol 28:955–959. https://doi.org/10.1200/jco.2009.24.4590

    Article  CAS  Google Scholar 

  4. Davies FE, Raje N, Hideshima T et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216. https://doi.org/10.1182/blood.v98.1.210

    Article  CAS  PubMed  Google Scholar 

  5. Benson DM Jr, Bakan CE, Zhang S et al (2011) IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118:6387–6391. https://doi.org/10.1182/blood-2011-06-360255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi J, Tricot GJ, Garg TK et al (2008) Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111:1309–1317. https://doi.org/10.1182/blood-2007-03-078535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahaweni NM, Bos GMJ, Mitsiades CS, Tilanus MGJ, Wieten L (2018) Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions. Cancer Immunol Immunother 67:861–872. https://doi.org/10.1007/s00262-018-2140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fauriat C, Mallet F, Olive D, Costello RT (2006) Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 20:732–733. https://doi.org/10.1038/sj.leu.2404096

    Article  CAS  PubMed  Google Scholar 

  9. Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol (Northwood, London, England) 24:312–317. https://doi.org/10.1007/s12032-007-0007-y

    Article  Google Scholar 

  10. Alici E, Sutlu T, Björkstrand B et al (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155–3162. https://doi.org/10.1182/blood-2007-09-110312

    Article  CAS  PubMed  Google Scholar 

  11. Garg TK, Szmania SM, Khan JA et al (2012) Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97:1348–1356. https://doi.org/10.3324/haematol.2011.056747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weigent DA, Stanton GJ, Johnson HM (1983) Interleukin 2 enhances natural killer cell activity through induction of gamma interferon. Infect Immun 41:992–997. https://doi.org/10.1128/IAI.41.3.992-997.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, Croce CM, Baumann H, Caligiuri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943. https://doi.org/10.1172/JCI119258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waldmann TA, Tagaya Y (1999) The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19–49. https://doi.org/10.1146/annurev.immunol.17.1.19

    Article  CAS  PubMed  Google Scholar 

  15. Lim D-P, Jang Y-Y, Kim S et al (2014) Effect of exposure to interleukin-21 at various time points on human natural killer cell culture. Cytotherapy 16:1419–1430. https://doi.org/10.1016/j.jcyt.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  16. Wagner J, Pfannenstiel V, Waldmann A et al (2017) A two-phase expansion protocol combining interleukin (IL)-15 and IL-21 improves natural killer cell proliferation and cytotoxicity against rhabdomyosarcoma. Front Immunol. https://doi.org/10.3389/fimmu.2017.00676

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383. https://doi.org/10.1182/blood-2004-12-4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kweon S, Phan M-TT, Chun S et al (2019) Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front Immunol. https://doi.org/10.3389/fimmu.2019.00879

    Article  PubMed  PubMed Central  Google Scholar 

  19. Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0030264

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Can Res 69:4010–4017. https://doi.org/10.1158/0008-5472.CAN-08-3712

    Article  CAS  Google Scholar 

  21. Baek HJ, Kim JS, Yoon M, Lee JJ, Shin MG, Ryang DW, Kook H, Kim SK, Cho D (2013) Ex vivo expansion of natural killer cells using cryopreserved irradiated feeder cells. Anticancer Res 33:2011–2019

    CAS  PubMed  Google Scholar 

  22. Senju H, Kumagai A, Nakamura Y et al (2018) Effect of IL-18 on the expansion and phenotype of human natural killer cells: application to cancer immunotherapy. Int J Biol Sci 14:331–340. https://doi.org/10.7150/ijbs.22809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh H, Figliola MJ, Dawson MJ et al (2011) Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Can Res 71:3516–3527. https://doi.org/10.1158/0008-5472.can-10-3843

    Article  CAS  Google Scholar 

  24. Phan MT, Lee SH, Kim SK, Cho D (2016) Expansion of NK Cells using genetically engineered K562 feeder cells. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-3684-7_14

    Article  PubMed  Google Scholar 

  25. Somanchi SS, Lee DA (2016) Ex vivo expansion of human nk cells using K562 engineered to express membrane bound IL21. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-3684-7_15

    Article  PubMed  Google Scholar 

  26. Famularo G, D’Ambrosio A, Quintieri F, Di Giovanni S, Parzanese I, Pizzuto F, Giacomelli R, Pugliese O, Tonietti G (1992) Natural killer cell frequency and function in patients with monoclonal gammopathies. J Clin Lab Immunol 37:99–109

    CAS  PubMed  Google Scholar 

  27. Pessoa de Magalhães RJ, Vidriales MB, Paiva B et al (2013) Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica 98:79–86. https://doi.org/10.3324/haematol.2012.067272

    Article  PubMed  PubMed Central  Google Scholar 

  28. Viel S, Charrier E, Marçais A, Rouzaire P, Bienvenu J, Karlin L, Salles G, Walzer T (2013) Monitoring NK cell activity in patients with hematological malignancies. Oncoimmunology. https://doi.org/10.4161/onci.26011

    Article  PubMed  PubMed Central  Google Scholar 

  29. Szmania S, Lapteva N, Garg T et al (2015) Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother. https://doi.org/10.1097/cji.0000000000000059

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bianchi G, Munshi NC (2015) Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125:3049–3058. https://doi.org/10.1182/blood-2014-11-568881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B (2017) Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol 8:1444. https://doi.org/10.3389/fimmu.2017.01444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA, Schlossman RL, Anderson KC (1996) Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 87:1928–1938

    Article  CAS  Google Scholar 

  33. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949. https://doi.org/10.1182/blood-2005-09-3671

    Article  CAS  PubMed  Google Scholar 

  34. Costello RT, Boehrer A, Sanchez C, Mercier D, Baier C, Le Treut T, Sebahoun G (2013) Differential expression of natural killer cell activating receptors in blood versus bone marrow in patients with monoclonal gammopathy. Immunology 139:338–341. https://doi.org/10.1111/imm.12082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Sherbiny YM, Meade JL, Holmes TD et al (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Can Res 67:8444–8449. https://doi.org/10.1158/0008-5472.can-06-4230

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2018R1A2B6006200, 2020R1A2C2010098).

Author information

Authors and Affiliations

Authors

Contributions

JL Thangaraj, SH Kweon, M-T Phan, MC Vo, and TH Chu performed the research and analyzed data; J Kim, I Hwang, JH Park, J Doh and SH Lee analyzed data; JH Kim, SH Kim, and JM Lee generated genetically engineered K562-OX40L-mb18/-21 cells; JS Doh, D Cho, and JJ Lee designed the research study and JL Thangaraj, SH Kweon, M-T Phan JH Park, JS Doh, GY Song, SY Ahn, SH Jung, HJ Kim, D Cho, and JJ Lee co-wrote the paper.

Corresponding authors

Correspondence to Duck Cho or Je-Jung Lee.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to report. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaraj, J.L., Phan, MT.T., Kweon, S. et al. Expansion of cytotoxic natural killer cells in multiple myeloma patients using K562 cells expressing OX40 ligand and membrane-bound IL-18 and IL-21. Cancer Immunol Immunother 71, 613–625 (2022). https://doi.org/10.1007/s00262-021-02982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02982-9

Keywords

Navigation