Log in

Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Metabotropic glutamate receptor type 5 (mGluR5) is a G protein-coupled receptor that has been implicated in several psychiatric and neurological diseases. The radiopharmaceutical [11C]ABP688 allows for in vivo quantification of mGluR5 availability using positron emission tomography (PET). In this study, we aimed to detail the regional distribution of [11C]ABP688 binding potential (BPND) and the existence of age/sex effects in healthy individuals.

Methods

Thirty-one healthy individuals aged 20 to 77 years (men, n = 18, 45.3 ± 18.2 years; females, n = 13, 41.5 ± 19.6 years) underwent imaging with [11C]ABP688 using the high-resolution research tomograph (HRRT). We developed an advanced partial volume correction (PVC) method using surface-based analysis in order to accurately estimate the regional variation of radioactivity. BPND was calculated using the simplified reference tissue model, with the cerebellum as the reference region. Surface-based and volume-based analyses were performed for 39 cortical and subcortical regions of interest per hemisphere.

Results

We found the highest [11C]ABP688 BPND in the lateral prefrontal and anterior cingulate cortices. The lowest [11C]ABP688 BPND was observed in the pre- and post-central gyri as well as the occipital lobes and the thalami. No sex effect was observed. Associations between age and [11C]ABP688 BPND without PVC were observed in the right amygdala and left putamen, but were not significant after multiple comparisons correction.

Conclusions

The present results highlight complexities underlying brain adaptations during the aging process, and support the notion that certain aspects of neurotransmission remain stable during the adult life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev. 1999;29(1):83–120.

    Article  CAS  PubMed  Google Scholar 

  2. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000;75(3):889–907.

    Article  CAS  PubMed  Google Scholar 

  3. Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J. 2001;359(Pt 3):465–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Waung MW, Huber KM. Protein translation in synaptic plasticity: mGluR-LTD, Fragile X. Curr Opin Neurobiol. 2009;19(3):319–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Benarroch EE. Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology. 2008;70(12):964–8.

    Article  PubMed  Google Scholar 

  6. Ametamey SM. Radiosynthesis and Preclinical Evaluation of 11C-ABP688 as a Probe for Imaging the Metabotropic Glutamate Receptor Subtype 5. J Nucl Med. 2006;47(4):698–705.

    CAS  PubMed  Google Scholar 

  7. Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med. 2007;48(2):247–52.

    CAS  PubMed  Google Scholar 

  8. Treyer V, Streffer J, Wyss MT, Bettio A, Ametamey SM, Fischer U, et al. Evaluation of the metabotropic glutamate receptor subtype 5 using PET and 11C-ABP688: assessment of methods. J Nucl Med. 2007;48(7):1207–15.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Xu Q, Li K, Zhu H, Qi R, Zhang Z, et al. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults. PLoS One. 2013;8(12), e83821.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Madsen K, Haahr MT, Marner L, Keller SH, Baare WF, Svarer C, et al. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study. J Cereb Blood Flow Metab. 2011;31(6):1475–81.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168(7):727–34.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hulka LM, Treyer V, Scheidegger M, Preller KH, Vonmoos M, Baumgartner MR, et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatr. 2014;19(5):625–32.

    Article  CAS  Google Scholar 

  14. DeLorenzo C, Kumar JS, Mann JJ, Parsey RV. In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011;31(11):2169–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, et al. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A. 2013;110(2):737–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Matuskey D, Pittman B, Planeta-Wilson B, Walderhaug E, Henry S, Gallezot JD, et al. Age effects on serotonin receptor 1B as assessed by PET. J Nucl Med. 2012;53(9):1411–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Moses-Kolko EL, Price JC, Shah N, Berga S, Sereika SM, Fisher PM, et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology. 2011;36(13):2729–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Engman J, Ahs F, Furmark T, Linnman C, Pissiota A, Appel L, et al. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [(1)(1)C]GR205171. Eur Neuropsychopharm. 2012;22(8):562–8.

    Article  CAS  Google Scholar 

  19. Fowler J, Volkow N, Wang G-J, Logan J, Pappas N, Shea C, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997;18(4):431–5.

    Article  CAS  PubMed  Google Scholar 

  20. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.

    Article  PubMed  Google Scholar 

  21. Uchida H, Chow TW, Mamo DC, Kapur S, Mulsant BH, Houle S, et al. Effects of aging on 5-HT(2A) R binding: a HRRT PET study with and without partial volume corrections. Int J Geriatr Psychiatry. 2011;26(12):1300–8.

    Article  PubMed  Google Scholar 

  22. Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. NeuroImage. 2014;92:225–36.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104–19.

    Article  PubMed  Google Scholar 

  24. Elmenhorst D, Minuzzi L, Aliaga A, Rowley J, Massarweh G, Diksic M, et al. In vivo and in vitro validation of reference tissue models for the mGluR(5) ligand [(11)C]ABP688. J Cereb Blood Flow Metab. 2010;30(8):1538–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hong I, Chung S, Kim H, Kim Y, Son Y, Cho Z. Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction. IEEE Trans Med Imaging. 2007;26(6):789–803.

    Article  CAS  PubMed  Google Scholar 

  26. Comtat C, Sureau F, Sibomana M, Hong I, Sjöholm N, Trebossen R. Image based resolution modeling for the HRRT OSEM reconstructions software. IEEE Nucl Sci Symp Conf Rec. 2008;4120–23.

  27. Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.

    Article  PubMed  Google Scholar 

  28. Costes N, Dagher A, Larcher K, Evans AC, Collins DL, Reilhac A. Motion correction of multi-frame PET data in neuroreceptor map**: simulation based validation. NeuroImage. 2009;47(4):1496–505.

    Article  PubMed  Google Scholar 

  29. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. NeuroImage. 1997;6(4):279–87.

    Article  CAS  PubMed  Google Scholar 

  30. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.

    Article  CAS  PubMed  Google Scholar 

  31. Milella M, Reader A, Albrechtsons D, Minuzi L, Soucy J, Benkelfat C. Human PET validation study of reference tissue models for the mGluR5 ligand [11C] ABP688. Paper presented at Society for Neuroscience Annual Meeting. Washington, DC; 2011. 946.06/AAA31.

  32. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996;4(3 Pt 1):153–8. doi:10.1006/nimg.1996.0066. PubMed.

    Article  CAS  PubMed  Google Scholar 

  33. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.

    Article  CAS  PubMed  Google Scholar 

  34. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.

    Article  CAS  PubMed  Google Scholar 

  35. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.

    Article  CAS  PubMed  Google Scholar 

  36. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull strip** problem in MRI. NeuroImage. 2004;22(3):1060–75.

    Article  CAS  PubMed  Google Scholar 

  37. Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  38. Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26(4):518–29.

    Article  PubMed  Google Scholar 

  39. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31(3):968–80.

    Article  PubMed  Google Scholar 

  41. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48(1):63–72.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39(5):904–11.

    CAS  PubMed  Google Scholar 

  43. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12(4):571–83.

    Article  CAS  PubMed  Google Scholar 

  44. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial Volume Correction Strategies in PET. PET Clin. 2007;2(2):235–49.

    Article  Google Scholar 

  45. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26(3):839–51.

    Article  PubMed  Google Scholar 

  46. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57(1):289–300.

    Google Scholar 

  47. R Development Core Team. R: a language and environment for statistical computing. 2013. http://www.R-project.org/.

  48. Tukey JW. Exploratory data analysis. Reading, MA: Addison-Wesley; 1977.

  49. Elston GN, Rockland KS. The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. Cereb Cortex. 2002;12(10):1071–8.

    Article  PubMed  Google Scholar 

  50. Elston GN. Cortical heterogeneity: implications for visual processing and polysensory integration. J Neurocytol. 2002;31(3–5):317–35.

    Article  PubMed  Google Scholar 

  51. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol. 2010;50:295–322.

    Article  CAS  Google Scholar 

  52. Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol. 1995;355(3):455–69.

    Article  CAS  PubMed  Google Scholar 

  53. Hadel S, Wirth C, Rapp M, Gallinat J, Schubert F. Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. JMRI-J Magn Reson Imaging. 2013;38(6):1480–7.

    Article  Google Scholar 

  54. Sailasuta N, Ernst T, Chang L. Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn Reson Imaging. 2008;26(5):667–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tsamis KI, Mytilinaios DG, Njau SN, Baloyannis SJ. Glutamate Receptors in Human Caudate Nucleus in Normal Aging and Alzheimer’s Disease. Curr Alzheimer Res. 2013;10(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  56. Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, et al. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy–implications for excitotoxicity. PLoS One. 2010;5(11), e14020.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain. 2006;129(Pt 1):96–107.

    PubMed  Google Scholar 

  58. Menard C, Quirion R. Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One. 2012;7(1), e28666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Car H, Stefaniuk R, Wiśniewska R. Effect of MPEP in Morris water maze in adult and old rats. Pharmacol Rep. 2006;59(1):88–93.

    Google Scholar 

  60. Leuzy A, Zimmer ER, Dubois J, Pruessner J, Cooperman C, Soucy JP, et al. In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct. 2015. doi:10.1007/s00429-014-0978-3.

  61. Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49(7):1097–106.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kagedal M, Cselenyi Z, Nyberg S, Raboisson P, Stahle L, Stenkrona P, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 - estimating occupancy in the absence of a reference region. NeuroImage. 2013;82:160–9.

    Article  PubMed  Google Scholar 

  63. DeLorenzo C, Milak MS, Brennan KG, Kumar JS, Mann JJ, Parsey RV. In vivo positron emission tomography imaging with [(1)(1)C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging. 2011;38(6):1083–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Mathews WB, Kuwabara H, Stansfield K, Valentine H, Alexander M, Kumar A, et al. Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C] ABP688 PET imaging. Synapse. 2014;68(12):565–73.

  65. Daggett L, Sacaan A, Akong M, Rao S, Hess S, Liaw C, et al. Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology. 1995;34(8):871–86.

    Article  CAS  PubMed  Google Scholar 

  66. Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. Nucl Med Biol. 2007;34(8):1009–17.

    Article  CAS  PubMed  Google Scholar 

  67. DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, et al. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptors subtype 5. Biol Psychiatry. 2015;77(3):266–75.

  68. Wyckhuys T, Verhaeghe J, Wyffels L, Langlois X, Schmidt M, Stroobants S, et al. N-acetylcysteine- and MK-801-induced changes in glutamate levels do not affect in vivo binding of metabotropic glutamate 5 receptor radioligand 11C-ABP688 in rat brain. J Nucl Med. 2013;54(11):1954–61.

    Article  CAS  PubMed  Google Scholar 

  69. Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, et al. Imaging in vivo glutamate fluctuations with [C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab. 2015;35:1169–74.

Download references

Compliance with Ethical Standards

Funding

The study was funded by the Savoy Foundation for Epilepsy (www.savoy-foundation.ca) (pilot project grant to EK and PRN and PhD studentship to JMD), and partially by the American Epilepsy Society (www.aesnet.org) (Early Career Physician Scientist Award to EK), Canadian Institutes of Health Research (CIHR) (www.cihr-irsc.gc.ca) [MOP-115131 to PRN and MOP-93614 to EK], and the Fonds de la recherche en santé du Québec (www.frqs.gouv.qc.ca) (PRN, research fellow).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Montreal Neurological Institute Research Ethics Board and the institutional review board of McGill University, and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan M. DuBois or Eliane Kobayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Simplified representation of volume-to-surface sampling method. (a) Left hemisphere shown in the coronal plane of a single subject’s T1 MRI. (b) Enlarged view of the anterior portion of the temporal lobe. A white line denotes the white matter surface and a blue line denotes the pial surface. An RBV-PVC BPND image (in yellow-red color scale) is co-registered and superimposed over the T1 MRI. The black dotted line represents corresponding vertices, with the midpoint indicated by the black circular point. In this example, BPND values are sampled from the midpoint to the surface mesh. The vertex corresponding to the midpoint is denoted by the green circle on the magnified surface mesh (c). The smaller white box denotes the region of the anterior temporal lobe that the magnified surface mesh corresponds to. RBV-PVC BPND values for all vertices are shown on the lateral left hemisphere pial surface of the same subject (d). (GIF 464 kb)

High-resolution image (TIFF 3017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuBois, J.M., Rousset, O.G., Rowley, J. et al. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET. Eur J Nucl Med Mol Imaging 43, 152–162 (2016). https://doi.org/10.1007/s00259-015-3167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3167-6

Keywords

Navigation