Log in

Current concepts on imaging in radiotherapy

  • Revwie Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

New high-precision radiotherapy (RT) techniques, such as intensity-modulated radiation therapy (IMRT) or hadrontherapy, allow better dose distribution within the target and spare a larger portion of normal tissue than conventional RT. These techniques require accurate tumour volume delineation and intrinsic characterization, as well as verification of target localisation and monitoring of organ motion and response assessment during treatment. These tasks are strongly dependent on imaging technologies. Among these, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography (US) and positron emission tomography (PET) have been applied in high-precision RT. For tumour volume delineation and characterization, PET has brought an additional dimension to the management of cancer patients by allowing the incorporation of crucial functional and molecular images in RT treatment planning, i.e. direct evaluation of tumour metabolism, cell proliferation, apoptosis, hypoxia and angiogenesis. The combination of PET and CT in a single imaging system (PET/CT) to obtain a fused anatomical and functional dataset is now emerging as a promising tool in radiotherapy departments for delineation of tumour volumes and optimization of treatment plans. Another exciting new area is image-guided radiotherapy (IGRT), which focuses on the potential benefit of advanced imaging and image registration to improve precision, daily target localization and monitoring during treatment, thus reducing morbidity and potentially allowing the safe delivery of higher doses. The variety of IGRT systems is rapidly expanding, including cone beam CT and US. This article examines the increasing role of imaging techniques in the entire process of high-precision radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fenwick JD, Tome WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16 4:199-208, Oct.

    Article  PubMed  Google Scholar 

  2. Jereczek-Fossa BA, Krengli M, Orecchia R. Particle beam radiotherapy for head and neck tumors: radiobiological basis and clinical experience. Head Neck 2006;28 8:750-60, Aug.

    Article  PubMed  Google Scholar 

  3. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47 3:551-60, Jun 1.

    Article  CAS  PubMed  Google Scholar 

  4. Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 2006;7 10:848-58, Oct.

    Article  PubMed  Google Scholar 

  5. Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of image-guided radiation therapy. Expert Rev Anticancer Ther 2007;7 1:89-103, Jan.

    Article  PubMed  Google Scholar 

  6. Sherouse GW, Mosher CE, Novins KL, Rosenmann JG, Chaney EL. Virtual simulation: concept and implementation. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW, editors. Ninth international conference on the use of computers in radiation therapy. Amsterdam, The Netherlands: North Holland Publishing Co.; 1987, pp. 433-6.

    Google Scholar 

  7. Baker GR. Localization: conventional and CT simulation. Br J Radiol 2006;79 Spec No 1:S36-49, Sep.

    Article  PubMed  Google Scholar 

  8. Valentini V, Piermattei A, Morganti AG, Gambacorta MA, Azario L, Macchia G, et al. Virtual simulation: fifteen years later. Rays 2003;28 3:293-8, Jul-Sep.

    PubMed  Google Scholar 

  9. Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18-FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923-31.

    Article  CAS  PubMed  Google Scholar 

  10. Cazzaniga LF, Marinoni MA, Bossi A, Bianchi E, Cagna E, Cosentino D, et al. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiother Oncol 1998;47:293-6.

    Article  CAS  PubMed  Google Scholar 

  11. Hermans R, Feron M, Bellon E, Dupont P, Van den Bogaert W, Baert AL. Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. Int J Radiat Oncol Biol Phys 1998;40:553-7.

    Article  CAS  PubMed  Google Scholar 

  12. Hurkmans CW, Borger JH, v Giersbergen A, Cho J, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001;50:1366-72.

    Article  CAS  PubMed  Google Scholar 

  13. Tai P, Van Dyk J, Yu E, Battista J, Stitt L, Coad T. Variability of target volume delineation in cervical oesophageal cancer. Int J Radiat Oncol Biol Phys 1998;42:277-88.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto M, Nagata Y, Okajima K, Ishigaki T, Murata R, Mizowaki T, et al. Differences in target outline delineation from CT scans of brain tumours using different methods and different observers. Radiother Oncol 1999;50:151-6.

    Article  CAS  PubMed  Google Scholar 

  15. Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006;79 Spec No 1:S2-15, Sep.

    Article  PubMed  Google Scholar 

  16. Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, McNair H, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 2003;66 2:203-16, Feb.

    Article  PubMed  Google Scholar 

  17. Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, et al. The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992;24 4:767-75.

    Article  PubMed  Google Scholar 

  18. Newbold K, Partridge M, Cook G, Sohaib SA, Charles-Edwards E, Rhys-Evans P, et al. Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review. Br J Radiol 2006;79 943:554-61, Jul.

    Article  CAS  PubMed  Google Scholar 

  19. Manavis J, Sivridis L, Koukourakis MI. Nasopharyngeal carcinoma: the impact of CT-scan and of MRI on staging, radiotherapy treatment planning, and outcome of the disease. Clin Imaging 2005;29 2:128-33, Mar-Apr.

    PubMed  Google Scholar 

  20. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 1999;43 1:57-66, Jan 1.

    Article  CAS  PubMed  Google Scholar 

  21. Barillot I, Reynaud-Bougnoux A. The use of MRI in planning radiotherapy for gynaecological tumours. Cancer Imaging 2006;6:100-6, Jun 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heenan SD. Magnetic resonance imaging in prostate cancer. Prostate Cancer Prostatic Dis 2004;7 4:282-8.

    Article  CAS  PubMed  Google Scholar 

  23. Kauczor HU, Zechmann C, Stieltjes B, Weber MA. Functional magnetic resonance imaging for defining the biological target volume. Cancer Imaging 2006;6:51-5, Jun 1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zapotoczna A, Sasso G, Simpson J, Roach M. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 2007;9 6:455-63, Jun.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Payne GS, Leach MO. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 2006;79 Spec No 1:S16-26, Sep.

    Article  CAS  PubMed  Google Scholar 

  26. Pouliot J, Kim Y, Lessard E, Hsu IC, Vigneron DB, Kurhanewicz J. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 2004;59 4:1196-207, Jul 15.

    Article  PubMed  Google Scholar 

  27. Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr 2006;16 1:61-101.

    Article  CAS  PubMed  Google Scholar 

  28. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55 3:317-24, Jun.

    Article  CAS  PubMed  Google Scholar 

  29. Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62 1:51-60, Jan.

    Article  PubMed  Google Scholar 

  30. Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005;63 4:1016-23, Nov 15.

    Article  PubMed  Google Scholar 

  31. Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63 5:1432-41, Dec 1.

    Article  PubMed  Google Scholar 

  32. Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49 3:259-66, Sep.

    CAS  PubMed  Google Scholar 

  33. Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007;67 3:709-19, Mar 1.

    Article  PubMed  Google Scholar 

  34. Moureau-Zabotto L, Touboul E, Lerouge D, Deniaud-Alexandre E, Grahek D, Foulquier JN, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;63 2:340-5, Oct 1.

    Article  PubMed  Google Scholar 

  35. Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73 3:269-75, Dec.

    Article  PubMed  Google Scholar 

  36. Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol 2007;78 3:206-12, Mar.

    Article  PubMed  Google Scholar 

  37. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233 1:93-100, Oct.

    Article  PubMed  Google Scholar 

  38. Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27 6:478-87, Jun.

    Article  PubMed  Google Scholar 

  39. Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48 Suppl 1:68S-77S, Jan.

    CAS  Google Scholar 

  40. Lin LL, Mutic S, Malyapa RS, Low DA, Miller TR, Vicic M, et al. Sequential FDG-PET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2005;63 5:1494-501, Dec 1.

    Article  PubMed  Google Scholar 

  41. Schinagl DA, Kaanders JH, Oyen WJ. From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging 2006;6:S107-16, Oct 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, El-Ghazi el A, Lehmann W, et al. Standardized uptake value of 2-[F-18]fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20:1398-404.

    Article  CAS  PubMed  Google Scholar 

  43. Kalff V, Duong C, Drummond EG, Matthews JP, Hicks RJ. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 2006;47:14-22.

    PubMed  Google Scholar 

  44. Brahme A. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol 2003;42 2:123-36.

    Article  PubMed  Google Scholar 

  45. Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007;34 2:185-96, Feb.

    Article  PubMed  Google Scholar 

  46. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80 12 Suppl:2505-9, Dec 15.

    Article  CAS  PubMed  Google Scholar 

  47. Biehl KJ, Kong FM, Dehdashti F, ** JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumour volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47 11:1808-12.

    PubMed  Google Scholar 

  48. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48 1:108-14, Jan.

    CAS  PubMed  Google Scholar 

  49. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69 3:247-50, Dec.

    Article  PubMed  Google Scholar 

  50. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 2004;25 7:651-6, Jul.

    Article  CAS  PubMed  Google Scholar 

  51. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45 8:1287-92, Aug.

    PubMed  Google Scholar 

  52. Somer EJ. PACS man: questioning nuclear medicine and PET integration. Nucl Med Commun 2006;27 8:601-2, Aug.

    Article  PubMed  Google Scholar 

  53. Polizzari CA, Chen GT, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989;13:20-26, Aug.

    Article  Google Scholar 

  54. Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996;1 1:35-51, Mar.

    Article  PubMed  Google Scholar 

  55. Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med 2004;45 Suppl 1:36S-45S, Jan.

    PubMed  Google Scholar 

  56. De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005;77 1:5-10, Oct.

    Article  PubMed  Google Scholar 

  57. Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167-71.

    Article  CAS  Google Scholar 

  58. Farahani K, Slates R, Shao Y, Silverman R, Cherry S. Contemporaneous positron emission tomography and MR imaging at 1.5 T. J Magn Reson Imaging 1999;9 3:497-500, Mar.

    Article  CAS  PubMed  Google Scholar 

  59. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47 12:1968-76, Dec.

    PubMed  Google Scholar 

  60. Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ. Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 2001;58 2:105-20, Feb.

    Article  CAS  PubMed  Google Scholar 

  61. Peignaux K, Crehange G, Truc G, Barillot I, Naudy S, Maingon P. High precision radiotherapy with ultrasonic imaging guidance. Cancer Radiother 2006;10 5:231-4, Sep.

    Article  CAS  PubMed  Google Scholar 

  62. Kupelian PA, Langen KM, Willoughby TR, Wagner TH, Zeidan OA, Meeks SL. Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:593-6, Oct 1.

    Article  PubMed  Google Scholar 

  63. Meeks SL, Buatti JM, Bouchet LG, Bova FJ, Ryken TC, Pennington EC, et al. Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys 2003;55 4:1092-101, Mar 15.

    Article  PubMed  Google Scholar 

  64. Morr J, DiPetrillo T, Tsai JS, Engler M, Wazer DE. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53 5:1124-9, Aug 1.

    Article  PubMed  Google Scholar 

  65. Peignaux K, Truc G, Barillot I, Ammor A, Naudy S, Crehange G, et al. Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol 2006;81 2:176-8, Nov.

    Article  PubMed  Google Scholar 

  66. Soete G, De Cock M, Verellen D, Michielsen D, Keuppens F, Storme G. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 2007;67 3:823-7, Mar 1.

    Article  PubMed  Google Scholar 

  67. Cheng CW, Wong J, Grimm L, Chow M, Uematsu M, Fung A. Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization. Am J Clin Oncol 2003;26 3:e28-36, Jun.

    PubMed  Google Scholar 

  68. Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, et al. Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 2006;79 Spec No 1:S79-86, Sep.

    Article  PubMed  Google Scholar 

  69. de Crevoisier R, Kuban D, Lefkopoulos D. Image-guided radiotherapy by in-room CT-linear accelerator combination. Cancer Radiother 2006;10 5:245-51, Sep.

    Article  PubMed  Google Scholar 

  70. Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, et al. Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;61 2:561-9, Feb 1.

    Article  PubMed  Google Scholar 

  71. Barker JL Jr, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 2004;59 4:960-70, Jul 15.

    Article  PubMed  Google Scholar 

  72. Chang EL, Shiu AS, Lii MF, Rhines LD, Mendel E, Mahajan A, et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 2004;59 5:1288-94, Aug 1.

    Article  PubMed  Google Scholar 

  73. Oelfke U, Tucking T, Nill S, Seeber A, Hesse B, Huber P, et al. Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim 2006;31 1:62-70, Spring.

    Article  PubMed  Google Scholar 

  74. Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 2006;10 5:252-7, Sep.

    Article  PubMed  Google Scholar 

  75. Li T, Schreibmann E, Yang Y, **ng L. Motion correction for improved target localization with on-board cone-beam computed tomography. Phys Med Biol 2006;51 2:253-67, Jan 21.

    Article  CAS  PubMed  Google Scholar 

  76. Mosleh-Shirazi MA, Evans PM, Swindell W, Webb S, Partridge M. A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 1998;48 3:319-28, Sep.

    Article  CAS  PubMed  Google Scholar 

  77. Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 2005;61 2:552-60, Feb 1.

    Article  PubMed  Google Scholar 

  78. Kuo JS, Yu C, Petrovich Z, Apuzzo ML. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 2003;53 5:1235-9, Nov.

    Article  PubMed  Google Scholar 

  79. Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44 4:911-9, Jul 1.

    Article  CAS  PubMed  Google Scholar 

  80. Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48 4:1175-85, Nov 1.

    Article  CAS  PubMed  Google Scholar 

  81. Mageras GS, Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 2004;14 1:65-75, Jan.

    Article  PubMed  Google Scholar 

  82. Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 2000;47 4:1097-103, Jul 1.

    Article  CAS  PubMed  Google Scholar 

  83. Kubo D, Hill BC. Respiration gated radiotherapy treatment: a technical study. Physics 1996;41 1:83-91, Jan.

    CAS  Google Scholar 

  84. Kubo D, Len PM, Minohara S, Mostafavi H. Breathing synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 2000;27 2:346-53, Feb.

    Article  CAS  PubMed  Google Scholar 

  85. Onimaru R, Shirato H, Fu**o M, Suzuki K, Yamazaki K, Nishimura M, et al. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys 2005;63 1:164-9, Sep 1.

    Article  PubMed  Google Scholar 

  86. Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 2005;32 4:942-51, Apr.

    Article  PubMed  Google Scholar 

  87. Kauczor HU, Plathow C. Imaging tumour motion for radiotherapy planning using MRI. Cancer Imaging 2006;6:S140-4, Oct 31.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31 12:3179-86, Dec.

    Article  CAS  PubMed  Google Scholar 

  89. Wolthaus JW, van Herk M, Muller SH, Belderbos JS, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol 2005;50 7:1569-83, Apr 7.

    Article  CAS  PubMed  Google Scholar 

  90. Willoughby TR, Forbes AR, Buchholz D, Langen KM, Wagner TH, Zeidan OA. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:568-75, Oct 1.

    Article  PubMed  Google Scholar 

  91. Parodi K, Paganetti H, Cascio E, Flanz JB, Bonab AA, Alpert NM, et al. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants. Med Phys 2007;34 2:419-35, Feb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mockel D, Muller H, Pawelke J, Sommer M, Will E, Enghardt W. Quantification of beta(+) activity generated by hard photons by means of PET. Phys Med Biol 2007;52 9:2515-30, May 7.

    Article  CAS  PubMed  Google Scholar 

  93. Parodi K, Enghardt W, Haberer T. In-beam PET measurements of β+ radioactivity induced by proton beams. Phys 2002;47 1:21-36, Jan 7.

    CAS  Google Scholar 

  94. Ponisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 2004;49 23:5217-32, Dec 7.

    Article  PubMed  Google Scholar 

  95. Enghardt W, Fromm WD, Geissel H, Heller H, Kraft G, Magel A, et al. The spatial distribution of positron-emitting nuclei generated by relativistic light ion beams in organic matter. Phys Med Biol 1992;37:2127.

    Article  Google Scholar 

  96. Pawelke J, Byars L, Enghardt W, Fromm WD, Geissel H, Hasch BG, et al. The investigation of different cameras for in-beam PET imaging. Phys Med Biol 1996;41:279-96.

    Article  CAS  PubMed  Google Scholar 

  97. Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49 19:4593-610, Oct 7.

    Article  CAS  PubMed  Google Scholar 

  98. Piermattei A, Fidanzio A, Stimato G, Azario L, Grimaldi L, D’Onofrio G, et al. In vivo dosimetry by an aSi-based EPID. Med Phys 2006;33 11:4414-22, Nov.

    Article  PubMed  Google Scholar 

  99. Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50 1:4-14, Mar.

    CAS  PubMed  Google Scholar 

  100. Molthoff CF, Klabbers BM, Berkhof J, Felten JT, van Gelder M, Windhorst AD, et al. Monitoring Response to Radiotherapy in Human Squamous Cell Cancer Bearing Nude Mice: Comparison of 2′-deoxy-2′-[(18)F]fluoro-d-glucose (FDG) and 3′-[ (18)F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol 2007, Jul 21, in press.

  101. Weinberg IN. Applications for positron emission mammography. Phys Med 2006;21 Suppl 1:132-7.

    Article  PubMed  Google Scholar 

  102. Ergün EL, Kara PO, Gedik GK, Kars A, Turker A, Caner B. The role of Tc-99m (V) DMSA scintigraphy in the diagnosis and follow-up of lung cancer lesions. Ann Nucl Med 2007;21 5:275-83, Jul.

    Article  PubMed  Google Scholar 

  103. Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34 4:453-62, Apr.

    Article  PubMed  Google Scholar 

  104. Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the (18)F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6 1:23-30, Feb.

    Article  PubMed  Google Scholar 

  105. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-Choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74:214-20.

    Article  CAS  PubMed  Google Scholar 

  106. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44 1:32-8, Jul.

    Article  PubMed  Google Scholar 

  107. Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomastreated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66 2:339-44, Oct 1.

    Article  CAS  PubMed  Google Scholar 

  108. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 2006;27 7:1432-7, Aug.

    CAS  PubMed  Google Scholar 

  109. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. Neurosurgery 2005;103 3:498-507, Sep.

    Article  Google Scholar 

  110. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, et al. Ann methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery-in malignant glioma. Nucl Med 2004;18 4:291-6, Jun.

    Article  CAS  Google Scholar 

  111. Grosu AL, Lachner R, Wiedenmann N, Stark S, Thamm R, Kneschaurek P, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11Cmethionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 2003;56 5:1450-63, Aug 1.

    Article  PubMed  Google Scholar 

  112. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006;65 1:222-7, May 1.

    Article  PubMed  Google Scholar 

  113. Thorwarth D, Eschmann S, Paulsen F, Alber M. A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 2007;68 2:515-21, Jun 1.

    Article  CAS  PubMed  Google Scholar 

  114. Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. BMC [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. Cancer 2006;6:51, Mar 4.

    PubMed  PubMed Central  Google Scholar 

  115. Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 2006;80 2:151-6, Aug.

    Article  CAS  PubMed  Google Scholar 

  116. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 2005;46 2:253-60, Feb.

    PubMed  Google Scholar 

  117. Sun A, Sorensen J, Karlsson M, Turesson I, Langstrom B, Nilsson P, et al. 1-[11C]-acetate PET imaging in head and neck cancer-a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 2007;34 5:651-7, May.

    Article  PubMed  Google Scholar 

  118. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003;44 4:549-55, Apr.

    CAS  PubMed  Google Scholar 

  119. Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse Oyama N. Miller J Nucl Med 2003;44 4:549-55, Apr.

    PubMed  Google Scholar 

  120. **angsong Z, Weian C. Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with (13)N-NH (3) PET. J Neurooncol 2007;82 3:305-11, May.

    Article  CAS  PubMed  Google Scholar 

  121. Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006;33 4:412-9, Apr.

    Article  CAS  PubMed  Google Scholar 

  122. Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi, et al. Evaluation of 3′-Deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45 10:1754-8, Oct.

    CAS  PubMed  Google Scholar 

  123. Chao KS. 3′-deoxy-3′-(18)F-fluorothymidine (FLT) Positron emission tomography for early prediction of response to chemoradiotherapy—a clinical application model of esophageal cancer. Semin Oncol 2007;34 2 Suppl 1:S31-6, Apr.

    Article  CAS  PubMed  Google Scholar 

  124. Chen JC, Chang SM, Hsu FY, Wang HE, Liu RS. MicroPET-based pharmacokinetic analysis of the radiolabeled boron compound [18F]FBPA-F in rats with F98 glioma. Appl Radiat Isot 2004;61 5:887-91, Nov.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lucignani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecchi, M., Fossati, P., Elisei, F. et al. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 35, 821–837 (2008). https://doi.org/10.1007/s00259-007-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0631-y

Keywords

Navigation