Log in

Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues, the kidneys are the major dose-limiting organs, because of tubular reabsorption and retention of radioactivity. Preventing renal uptake or toxicity will allow for higher tumour radiation doses. We tested the cytoprotective drug amifostine, which selectively protects healthy tissue during chemo- and radiotherapy, for its renoprotective capacities after PRRT with high-dose [177Lu-DOTA0,Tyr3]octreotate.

Methods

Male Lewis rats were injected with 278 or 555 MBq [177Lu-DOTA0,Tyr3]octreotate to create renal damage and were followed up for 130 days. For renoprotection, rats received either amifostine or co-injection with lysine. Kidneys, blood and urine were collected for toxicity measurements. At 130 days after PRRT, a single-photon emission computed tomography (SPECT) scan was performed to quantify tubular uptake of 99mTc-dimercaptosuccinic acid (DMSA), a measure of tubular function.

Results

Treatment with 555 MBq [177Lu-DOTA0,Tyr3]octreotate resulted in body weight loss, elevated creatinine and proteinuria. Amifostine and lysine treatment significantly prevented this rise in creatinine and the level of proteinuria, but did not improve the histological damage. In contrast, after 278 MBq [177Lu-DOTA0,Tyr3]octreotate, creatinine values were slightly, but not significantly, elevated compared with the control rats. Proteinuria and histological damage were different from controls and were significantly improved by amifostine treatment. Quantification of 99mTc-DMSA SPECT scintigrams at 130 days after [177Lu-DOTA0,Tyr3]octreotate therapy correlated well with 1/creatinine (r 2=0.772, p<0.001).

Conclusion

Amifostine and lysine effectively decreased functional renal damage caused by high-dose [177Lu-DOTA0,Tyr3]octreotate. Besides lysine, amifostine might be used in clinical PRRT as well as to maximise anti-tumour efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005;46:62S–6S.

    CAS  PubMed  Google Scholar 

  2. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med 2002;43:610–6.

    CAS  PubMed  Google Scholar 

  3. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005;23:2754–62.

    Article  CAS  PubMed  Google Scholar 

  4. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Clin Oncol 2004;22:2724–9.

    Article  CAS  PubMed  Google Scholar 

  5. Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2006;36:147–56.

    Article  PubMed  Google Scholar 

  6. Duncan JR,Welch MJ. Intracellular metabolism of indium-111-DTPA-labeled receptor targeted proteins. J Nucl Med 1993;34:1728–38.

    PubMed  Google Scholar 

  7. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46:99S–106S.

    CAS  PubMed  Google Scholar 

  8. De Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging, 2003;30:463–9.

    Article  PubMed  Google Scholar 

  9. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–22.

    Article  CAS  PubMed  Google Scholar 

  10. De Jong M, Rolleman EJ, Bernard BF, Visser TJ, Bakker WH, Breeman WA, et al. Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J Nucl Med 1996;37:1388–92.

    PubMed  Google Scholar 

  11. Rolleman EJ, Valkema R, De Jong M, Kooij PP, Krenning EP. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 2003;30:9–15.

    Article  CAS  PubMed  Google Scholar 

  12. Barone R, Pauwels S, De Camps J, Krenning EP, Kvols LK, Smith MC, et al. Metabolic effects of amino acid solutions infused for renal protection during therapy with radiolabelled somatostatin analogues. Nephrol Dial Transplant 2004;19:2275–81.

    Article  CAS  PubMed  Google Scholar 

  13. Bodei L, Cremonesi M, Zoboli S, Grana C, Bartolomei M, Rocca P, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 2003;30:207–16.

    Article  CAS  PubMed  Google Scholar 

  14. Rolleman EJ, Bernard B, De Visser M, Bijster M, Visser TJ, Vermeij M, et al. Long term toxicity of [177Lu-DOTA0,Tyr3]octreotate in rats. Eur J Nucl Med Mol Imaging 2006 Sep 22; [Epub ahead of print].

  15. Cohen EP, Robbins ME. Radiation nephropathy. Semin Nephrol 2003;23:486–99.

    Article  PubMed  Google Scholar 

  16. Andreassen CN, Grau C, Lindegaard JC. Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy. Semin Radiat Oncol 2003;13:62–72.

    Article  PubMed  Google Scholar 

  17. Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med 1985;47:23–7.

    Article  CAS  PubMed  Google Scholar 

  18. Capizzi R. Amifostine: the preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies. Semin Oncol 1996;23:2–17.

    CAS  PubMed  Google Scholar 

  19. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 2001;28:1319–25.

    Article  CAS  PubMed  Google Scholar 

  20. Konijnenberg MW, Bijster M, Krenning EP, De Jong M. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med 2004;45:1260–9.

    CAS  PubMed  Google Scholar 

  21. De Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, et al. [177Lu-DOTA0,Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 2001;92:628–33.

    Article  PubMed  Google Scholar 

  22. Forrer F, Valkema R, Bernard B, Hoppin J, Schramm N, Rolleman EJ, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging, 2006; in press.

  23. Asna N, Lewy H, Ashkenazi IE, Deutsch V, Peretz H, Inbar M, et al. Time dependent protection of amifostine from renal and hematopoietic cisplatin induced toxicity. Life Sci 2005;76:1825–34.

    Article  CAS  PubMed  Google Scholar 

  24. Capizzi RL, Scheffler BJ, Schein PS. Amifostine-mediated protection of normal bone marrow from cytotoxic chemotherapy. Cancer 1993;72:3495–501.

    Article  CAS  PubMed  Google Scholar 

  25. Cassatt DR, Fazenbaker CA, Kifle G, Bachy CM. Subcutaneous administration of amifostine (ethyol) is equivalent to intravenous administration in a rat mucositis model. Int J Radiat Oncol Biol Phys 2003;57:794–802.

    Article  CAS  PubMed  Google Scholar 

  26. Capizzi RL. The preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies by amifostine. Semin Oncol 1999;26:3–21.

    CAS  PubMed  Google Scholar 

  27. Culy CR, Spencer CM. Amifostine: an update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome. Drugs 2001;61:641–84.

    Article  CAS  PubMed  Google Scholar 

  28. Vardy J, Wong E, Izard M, Clifford A, Clarke SJ. Life-threatening anaphylactoid reaction to amifostine used with concurrent chemoradiotherapy for nasopharyngeal cancer in a patient with dermatomyositis: a case report with literature review. Anticancer Drugs 2002;13:327–30.

    Article  CAS  PubMed  Google Scholar 

  29. Lin A, Lawrence TS. An anaphylactoid reaction from amifostine. Radiother Oncol 2006;79:352.

    Article  PubMed  Google Scholar 

  30. Demiral AN, Yerebakan O, Simsir V, Alpsoy E. Amifostine-induced toxic epidermal necrolysis during radiotherapy: a case report. Jpn J Clin Oncol 2002;32:477–9.

    Article  PubMed  Google Scholar 

  31. Boccia R. Improved tolerability of amifostine with rapid infusion and optimal patient preparation. Semin Oncol 2002;29:9–13.

    Article  CAS  PubMed  Google Scholar 

  32. Koukourakis MI, Kyrias G, Kakolyris S, Kouroussis C, Frangiadaki C, Giatromanolaki A, et al. Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. J Clin Oncol 2000;18:2226–33.

    Article  CAS  PubMed  Google Scholar 

  33. Anne PR. Phase II trial of subcutaneous amifostine in patients undergoing radiation therapy for head and neck cancer. Semin Oncol 2002;29:80–3.

    Article  CAS  PubMed  Google Scholar 

  34. Block KI, Gyllenhaal C. Commentary: the pharmacological antioxidant amifostine—implications of recent research for integrative cancer care. Integr Cancer Ther 2005;4:329–51.

    Article  CAS  PubMed  Google Scholar 

  35. Sasse AD, Clark LG, Sasse EC, Clark OA. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 2006;64:784–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Flavio Forrer was supported by grants from the Swiss National Science Foundation and the Novartis Foundation Switzerland. The NanoSPECT was achieved through a grant of the Dutch organisation for scientific research (ZonMW). The authors wish to thank Ria van den Berg, Esther Slottje and Ron Briegoos for their expert help and effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar J. Rolleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolleman, E.J., Forrer, F., Bernard, B. et al. Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging 34, 763–771 (2007). https://doi.org/10.1007/s00259-006-0291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0291-3

Keywords

Navigation