Log in

Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Laccase production and pellet formation of transformants of Coprinopsis cinerea strain FA2222 of C. cinerea laccase gene lcc1 subcloned behind the gpdII-promoter from Agaricus bisporus were compared with a control transformant carrying no extra laccase gene. At the optimum growth temperature of 37 °C, maximal laccase yields of 2.9 U/ml were obtained by the best lcc1 transformant pYSK7-26 in liquid shake flask cultures. Reduction in temperature to 25 °C increased laccase yields up to 9.2 U/ml. The control transformant had no laccase activities at 37 °C but native activity at 25 °C (3.5 U/ml). Changing the temperature had severe effects on the morphology of the mycelial pellets formed during cultivation, but links of distinct pellet morphologies to native or recombinant laccase production could not be established. Automated image analysis was used to characterise pellet formation and morphological parameters (pellet area, diameter, convexity and mycelial structure). Cross sections of selected pellets showed that they differentiated in an outer rind and an inner medulla of loosened hyphae. Pellets at 25 °C had a small and dense outer zone and adopted with time a smooth surface. Pellets at 37 °C had a broader outer zone and a fringy surface due to generation of more and larger protuberances in the rind that when released can serve for production of further pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves AMCR, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JGH, Wösten HAB (2004) Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 70:6379–6384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antecka A, Blatkiewicz M, Bizukojć M, Ledakowicz S (2016) Morphology engineering of basidiomycetes for improved laccase biosynthesis. Biotechnol Lett 38:667–672

    Article  PubMed  CAS  Google Scholar 

  • Arimoto M, Yamagishi K, Wang JQ, Tanaka K, Miyoshi T, Kamei I, Kondo R, Moro T, Kawagishi H, Hirai H (2015) Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene. AMB Express 5:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Babič J, Pavko A (2012) Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer. J Ind Microbiol Biotechnol 39:449–457

    Article  PubMed  CAS  Google Scholar 

  • Bentil JA, Thygesen A, Mensah M, Lange L, Meyer AS (2018) Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 102:5827–5839

    Article  CAS  Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2017) Upgrading laccase production and biochemical properties: strategies and challenges. Biotechnol Prog 33:1015–1034

    Article  PubMed  CAS  Google Scholar 

  • Bhandari DR, Shen T, Römpp A, Zorn H, Spengler B (2014) Analysis of cyathane-type diterpenoids from Cyathus striatus and Hericium erinaceus by high-resolution MALDI MS imaging. Anal Bioanal Chem 406:695–704

  • Cannatelli MD, Ragauskas AJ (2016) Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization. Appl Microbiol Biotechnol 100:8685–8691

    Article  PubMed  CAS  Google Scholar 

  • Cheng SJ, Yang PZ, Guo LQ, Lin JF, Lou NN (2009) Expression of multi-functional cellulase gene mfc in Coprinus cinereus under control of different basidiomycete promoters. Bioresour Technol 100:4475–4480

  • Coconi-Linares N, Ortiz-Vázquez E, Fernández F, Loske AM, Gómez-Lim MA (2015) Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. J Biotechnol 209:76–84

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CAMJ (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171

    Article  PubMed  CAS  Google Scholar 

  • Cui FJ, Chen XX, Liu WM, Sun WJ, Huo S, Yang Y (2016) Control of Grifola frondosa morphology by agitation and aeration for improving mycelia and exo-polymer production. Appl Biochem Biotechnol 179:459–473

    Article  PubMed  CAS  Google Scholar 

  • de Bekker C, van Veluw GJ, Vinck A, Wiebenga A, Wösten HAB (2011) Heterogeneity of Aspergillus niger micro-colonies in liquid shaken cultures. Appl Environ Microbiol 77:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Dekker RFH, Barbosa AM (2001) The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzym Microb Technol 28:81–88

    Article  CAS  Google Scholar 

  • Dhakar K, Pandey A (2013) Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Res 2013:869062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Z, Wang Q, Peng L, Zhang L, Gu Z, Shi G, Zhang K (2012) Relationship between mycelium morphology and extracellular polysaccharide production of medicinal mushroom Ganoderma lucidum in submerged culture. J Med Plant Res 6:2868–2874

    Google Scholar 

  • Domingos M, Brasil de Souza-Cruz P, Ferrau A, Ramalho Prata AM (2017) A new bioreactor design for culturing basidiomycetes: mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem Eng Sci 170:670–676

    Article  CAS  Google Scholar 

  • Dörnte B, Kües U (2012) Reliability in transformation of the basidiomycete Coprinopsis cinerea. Curr Trends Biotechnol Pharm 6:340–355

  • Dörnte B, Kües U (2016) Paradoxical performance of tryptophan synthase gene trp1 + in transformations of the basidiomycete Coprinopsis cinerea. Appl Microbiol Biotechnol 100:8789–8807

    Article  PubMed  CAS  Google Scholar 

  • Dutt D, Tyagi CH, Singh RP, Gautam A, Agnohotri S, Kumar A (2013) Isolation and biochemical characterization of crude xylanase from Coprinus cinereus AT-1 MTCC 9695 and its effectiveness in biodeinking of SOP. Cellul Chem Technol 47:203–217

    CAS  Google Scholar 

  • Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms 14:211–239

    Article  PubMed  CAS  Google Scholar 

  • Fang QH, Zhong JJ (2002) Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog 18:51–54

  • Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37:1375–1379

  • Fazenda ML, Harvey LM, McNeil B (2010) Effects of dissolved oxygen on fungal morphology and process rheology during fed-batch processing of Ganoderma lucidum. J Microbiol Biotechnol 20:844–851

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Alejandre KI, Flores N, Tinoco-Valencia R, Caro M, Flores C, Galindo E, Serrano-Carreón L (2016) Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. J Biotechnol 223:42–49

    Article  PubMed  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002a) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    Article  PubMed  CAS  Google Scholar 

  • Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002b) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzym Microb Technol 30:529–536

    Article  CAS  Google Scholar 

  • Gehrig I, Bart HJ, Anke T, Germerdonk R (1998) Influence of morphology and rheology on the production characteristics of the basidiomycete Cyathus striatus. Biotechnol Bioeng 59:525–533

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Hamedi A, Ghanati F, Vahidi H (2012) Study on the effects of different culture conditions on the morphology of Agaricus blazei and the relationship between morphology and biomass or EPS production. Ann Microbiol 62:699–707

    Article  CAS  Google Scholar 

  • Han F, Liu Y, Guo LQ, Zeng XL, Liu ZM, Lin JF (2010) Heterologous expression of the immunomodulatory protein gene from Ganoderma sinense in the basidiomycete Coprinopsis cinerea. J Appl Microbiol 109:1838–1844

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MC, Schuren FHJ, Moukha SM, Vanzuilen CM, Punt PJ, Wessels JGH (1992) Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr Genet 22:447–454

    Article  PubMed  CAS  Google Scholar 

  • Hublik G, Schinner F (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzym Microb Technol 27:330–336

    Article  CAS  Google Scholar 

  • Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW (2004) Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. J Appl Microbiol 96:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzym Microb Technol 52:1–12

  • Jaspers CJ, Jimenez G, Penninckx MJ (1994) Evidence for a role of manganese peroxidase in the decolorization of Kraft pulp bleach plant effluent by P. chrysosporium: effects of initial culture conditions on enzyme production. J Biotechnol 37:229–234

    Article  CAS  Google Scholar 

  • Jiménez-Tobon GA, Penninckx MJ, Lejeune R (1997) The relationship between pellet size and production of Mn(II) peroxidase by Phanerochaete chrysosporium ATCC 24725 in submerged culture. Enzym Microb Technol 21:537–542

    Article  Google Scholar 

  • Jiménez-Tobon G, Kurzatkowski W, Rozbicka B, Solecka J, Pocsi I, Penninckx MJ (2003) In situ localization of manganese peroxidase production in mycelial pellets of Phanerochaete chrysosporium. Microbiology 149:3121–3127

    Article  PubMed  CAS  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456

    Article  PubMed  CAS  Google Scholar 

  • Kajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K, Iimura I (2004) Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Appl Microbiol Biotechnol 66:194–199

  • Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kües U (1998) Blue light overrides repression of asexual sporulation by mating type genes in the basidiomycete Coprinus cinereus. Fungal Genet Biol 23:95–109

    Article  PubMed  Google Scholar 

  • Kikuchi M, Kitamoto N, Shishido K (2004) Secretory production of Aspergillus oryzae xylanase XynF1, xynF1 cDNA product, in the basidiomycete Coprinus cinereus. Appl Microbiol Biotechnol 63:728–733

    Article  PubMed  CAS  Google Scholar 

  • Kilaru S (2006) Identification of fungal multi-copper oxidase gene families: overexpression and characterization of Coprinopsis cinerea laccases for applications in biotechnology. Dissertation, University of Goettingen

  • Kilaru S, Kües U (2005) Comparison of gpd genes and their protein products in basidiomycetes. Fungal Genet News Lett 52:18–24

    Google Scholar 

  • Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U (2006) Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 71:200–210

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Park MK, Yun JW (2006) Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum. Appl Biochem Biotechnol 134:249–262

    Article  PubMed  CAS  Google Scholar 

  • Krijgsheld P, Altelaar AF, Post H, Ringrose JH, Müller WH, Heck AJR, Wösten HAB (2012) Spatially resolving the secretome with the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123

    Article  PubMed  CAS  Google Scholar 

  • Kudanga T, Nemadziva B, Le Roes-Hill M (2017) Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 101:13–33

    Article  PubMed  CAS  Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  PubMed  CAS  Google Scholar 

  • Kües U, Dörnte B, Gießler A, Badalyan SM (2016) Asexual sporulation in Agaricomycetes. In: Wendland J (ed) The mycota I, 3rd edn. Growth, differentiation and sexuality. Springer, Berlin, pp 269–328

    Chapter  Google Scholar 

  • Kum H, Lee S, Ryu S, Choi HT (2011) Degradation of endocrine disrupting chemicals by genetic transformants with two lignin degrading enzymes in Phlebia tremellosa. J Microbiol 49:824–827

    Article  PubMed  CAS  Google Scholar 

  • Larrondo LF, Avila M, Salas L, Cullen D, Vicuña R (2003) Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology 149:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzym Microb Technol 35:369–376

    Article  CAS  Google Scholar 

  • Lejeune R, Baron GV (1998) Modeling the exponential growth of filamentous fungi during batch cultivation. Biotechnol Bioeng 60:169–179

    Article  PubMed  CAS  Google Scholar 

  • Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB (2007) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madzak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich JM (2005) Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5:635–646

    Article  PubMed  CAS  Google Scholar 

  • Martani F, Beltrametti F, Porro D, Branduardi P, Lotti M (2017) The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol Lett 364:fnx134

    Article  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Ecol 10:1457–1467

    CAS  Google Scholar 

  • Matsumura E, Yamamoto E, Numata A, Kawano T, Shin T, Murao S (1986) Structures of the laccase-catalyzed oxidation products of hydroxybenzoic acids in the presence of ABTS [2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)]. Agric Biol Chem 50:1355–1357

  • Michel FC Jr, Grulke EA, Reddy CA (1992) A kinetic model for the fungal pellet lifecycle. AICHE J 38:1449–1460

    Article  CAS  Google Scholar 

  • Michel FC, Grulke EA, Reddy CA (1990) Development of a stirred tank reactor system for the production of lignin peroxidases (ligninases) by Phanerochaete chrysosporium BKM-F-1767. J Ind Microbiol 5:103–112

    Article  CAS  Google Scholar 

  • Moukha SM, Wösten HAB, Asther M, Wessels JGH (1993) In situ localization of the secretion of lignin peroxidases in colonies of Phanerochaete chrysosporium using a sandwiched mode of culture. J Gen Microbiol 139:969–978

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi – are we expecting too much? Front Microbiol 5:75

  • Nyanhongo GS, Gomes J, Gübitz G, Zvauya R, Read JS, Steiner W (2002) Production of laccase by a newly isolated strain of Trametes modesta. Bioresour Technol 84:259–263

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Yamazaki T, Hasebe T, Kajiwara S, Watanabe A, Asada Y, Shishido K (1998) Molecular breeding of the basidiomycete Coprinus cinereus strains with high lignin-decolorization and -degradation activities using novel heterologous protein expression vectors. Appl Microbiol Biotechnol 49:285–289

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010:918761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan K, Zhao N, Yin Q, Zhang T, Xu X, Fang W, Hong Y, Fang Z, **ao Y (2014) Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresour Technol 162:4552

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial process. Biotechnol Adv 22:189–259

    Article  PubMed  CAS  Google Scholar 

  • Petre M, Teodorescu A, Tiluca E, Bejan C, Andronescu A (2010) Biotechnology of mushroom pellets producing by controlled submerged fermentation. Rom Biotechnol Lett 15(S2):50–55

    Google Scholar 

  • Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1:252–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus (sensu Buller). J Bacteriol 100:1222–1228

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rühl M (2010) Laccases and other ligninolytic enzymes of the basidiomycetes Coprinopsis cinerea and Pleurotus ostreatus. Dissertation. Georg-August-University, Göttingen

    Google Scholar 

  • Rühl M, Kües U (2009) Automated image analysis to observe pellet morphology in liquid cultures of filamentous fungi such as the basidiomycete Coprinopsis cinerea. Curr Trends Biotechnol Pharm 3:241–253

  • Rühl M, Majcherczyk A, Kües U (2013) Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie Van Leeuwenhoek 103:1029–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu SH, Cho MK, Kim M, Jung SM, Seo JH (2013) Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Appl Biochem Biotechnol 171:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Shu CH, Chou PF, Hsu IC (2005) Effects of morphology and oxygen supply on schizophyllan formation by Schizophyllum commune using a pellet size controlling bioreactor. J Chem Technol Biotechnol 80:1383–1388

  • Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CAMJ, Fournel A, Sigoillot JC, Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352

    Article  PubMed  CAS  Google Scholar 

  • Šnajdr J, Baldrian P (2007) Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol 52:498–502

    Article  Google Scholar 

  • Sun W, Xu M, **a C, Li A, Sun C (2013) Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater. Front Environ Sci Eng 7:200–210

    Article  CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2003) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzym Microb Technol 32:478–484

  • Tang YJ, Zhu LW, Li HM, Li DS (2007) Submerged culture of mushrooms in bioreactors – challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45:221–229

  • Tao TL, Cui FJ, Chen YX, Sun WJ, Huang DM, Zhang YY, Wu D, Liu WM (2018) Improved mycelia and polysaccharide production of Grifolia frondosa by controlling morphology with microparticle talc. Microb Cell Factories 17:1

    Article  Google Scholar 

  • Tavares APM, Coelho MAZ, Coutinho JAP, Xavier AMRB (2005) Laccase improvement in submerged cultivation: induced production and kinetic modelling. J Chem Technol Biotechnol 80:669–676

    Article  CAS  Google Scholar 

  • Tepwong P, Giri A, Ohshima T (2012) Effect of mycelial morphology on ergothioneine production during liquid fermentation of Lentinula edodes. Mycoscience 53:102–112

    Article  CAS  Google Scholar 

  • Tišma M, Žnidaršič-Plazl P, Vasić-Raćki D, Zelić B (2012) Optimization of laccase production by Trametes versicolor cultivated on industrial waste. Appl Biochem Biotechnol 166:36–46

    Article  PubMed  CAS  Google Scholar 

  • van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beck N, Muller WH, Arentshorst M, van der Mei HC, Ram AFJ, Dijksterhius J, Wösten HAB (2013) Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants. Stud Mycol 74:47–57

    Article  PubMed  Google Scholar 

  • Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet-relationship between morphology and productivity. Appl Microbiol Biotechnol 102:2997–3006

  • Wagner R, Mitchell DA, Sassaki GL, Amazonas MALA (2004) Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. J Biotechnol 114:153–164

    Article  PubMed  CAS  Google Scholar 

  • Wan-Mohtar WAAQI, Kadir SA, Saaro N (2016) The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exosaccharode production. Biotech Rep 11:2–11

    Article  Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    Article  PubMed  Google Scholar 

  • Wösten HAB, Veluw GJ, Bekker C, Krijgsheld P (2013) Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnol Lett 35:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig T, Lakowitz A, Krull R (2013) Comprehension of viscous morphology - evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth. J Biotechnol 163:124–132

    Article  PubMed  CAS  Google Scholar 

  • Yang FC, Yang MJ (2005) Influence of agitation intensity on mycelium aggregation of Ganoderma lucidum. J Chin Inst Chem Eng 36:669–674

    CAS  Google Scholar 

  • Yang FC, Yang MJ, Cheng SH (2009) A novel method to enhance the mycelia production of Ganoderma lucidum in submerged cultures by polymer additives and agitation strategies. J Taiwan Inst Chem Eng 40:148–154

    Article  CAS  Google Scholar 

  • Yang PZ, Gui LQ, Cheng SJ, Lou NN, Lin JF (2011) Recombinant multi-functional cellulose activity in submerged fermentation of lignocellulosic wastes. Renew Energy 36:3268–3272

    Article  CAS  Google Scholar 

  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Žmak PM, Podgornik A, Podgornik H, Koloini T (2006) Impact of pellet size on growth and lignin peroxidase activity of Phanerochaete chrysosporium. World J Microbiol Biotechnol 22:1243–1249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Zemin Fang for sharing his unpublished results with us and Gisbert Langer for his excellent technical support in measuring the C/N ratio of the culture supernatants. Work on recombinant laccase production in C. cinerea was supported within the framework of a Common Lower Saxony-Israel-Project (ZN 2043) by the Ministry of Science and Culture of Lower Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Kües.

Ethics declarations

Conflict of interest

M. Rühl and U. Kües declare that they have no conflict of interest. K. Lange approved a firstly reviewed manuscript and agreed to submission but died prior to a resubmission of the manuscript upon improvements made based on appreciated good reviewer comments. The paper is dedicated to her memory.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Karin Lange is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rühl, M., Lange, K. & Kües, U. Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures. Appl Microbiol Biotechnol 102, 7849–7863 (2018). https://doi.org/10.1007/s00253-018-9227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9227-7

Keywords

Navigation