Log in

Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI10 = 47.0 mL/g and SVI30 = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0–2.0 mg O2/L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adav SS, Lee D-J, Show K-Y, Tay J-H (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26:411–423

    Article  CAS  PubMed  Google Scholar 

  • Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41:1709–1721

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (1998) Standards methods for the examination of water and wastewater, 20th edn. Washington, D.C

  • Andreottola G, Foladori P, Ragazzi M (2001) On-line control of a SBR system for nitrogen removal from industrial wastewater. Water Sci Technol 43:93–100

    CAS  PubMed  Google Scholar 

  • Bassin JP, Kleerebezem R, Dezotti M, van Loosdrecht MCM (2012) Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Res 46:3805–3816

    Article  CAS  PubMed  Google Scholar 

  • Beun J, Hendriks A, van Loosdrecht MC, Morgenroth E, Wilderer P, Heijnen J (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290

    Article  CAS  Google Scholar 

  • Blackburne R, Yuan Z, Keller J (2008) Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res 42:2166–2176

    Article  CAS  PubMed  Google Scholar 

  • Coma M, Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Enhancing aerobic granulation for biological nutrient removal from domestic wastewater. Bioresour Technol 103:101–108

    Article  CAS  PubMed  Google Scholar 

  • Comeau Y, Hall KJ, Hancock REWOW (1986) Biological phosphorus removal. Water Res 20:1511–1521

    Article  CAS  Google Scholar 

  • Crocetti GF, Banfield FJ, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364

    Article  CAS  PubMed  Google Scholar 

  • de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol 49:9–17

    PubMed  Google Scholar 

  • De Kreuk MK, Heijnen JJ, Van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90:761–769

    Article  PubMed  Google Scholar 

  • de Kreuk MK, Kishida N, van Loosdrecht MCM (2007) Aerobic granular sludge—state of the art. Water Sci Technol 55:75

    Article  PubMed  Google Scholar 

  • Dobbeleers T, Daens D, Miele S, D’aes J, Caluwé M, Geuens L, Dries J (2017) Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry. Bioresour Technol 226:211–219

    Article  CAS  PubMed  Google Scholar 

  • Dries J (2016) Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors. Water Sci Technol 73:740–745

    CAS  PubMed  Google Scholar 

  • Dries J, De Schepper W, Geuens L, Blust R (2013) Removal of ecotoxicity and COD from tank truck cleaning wastewater. Water Sci Technol 68:2202–2207

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. 62:340–346

  • Flowers JJ, He S, Yilmaz S, Noguera DR, McMahon KD (2009) Denitrification capabilities of two biological phosphorus removal sludges dominated by different “Candidatus Accumulibacter” clades. Environ Microbiol Rep 1:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima T, Uda N, Onuki M, Satoh H, Mino T (2007) Development of the quantitative PCR method for CandidatusAccumulibacter phosphatis” and its application to activated sludge. J Water Environ Technol 5:37–43

    Article  Google Scholar 

  • Gao D, Yuan X, Liang H, Wu WM (2011) Comparison of biological removal via nitrite with real-time control using aerobic granular sludge and flocculent activated sludge. Appl Microbiol Biotechnol 89:1645–1652

    Article  CAS  PubMed  Google Scholar 

  • Ginestet P, Audic JM, Urbain V, Block JC (1998) Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Appl Environ Microbiol 64:2266–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães LB, Mezzari MP, Daudt GC, da Costa RHR (2016) Microbial pathways of nitrogen removal in aerobic granular sludge treating domestic wastewater. J Chem Technol Biotechnol 28:303–325

    Google Scholar 

  • Guisasola A, Vargas M, Marcelino M, Lafuente J, Casas C, Baeza JA (2007) On-line monitoring of the enhanced biological phosphorus removal process using respirometry and titrimetry. Biochem Eng J 35:371–379

    Article  CAS  Google Scholar 

  • Kishida N, Kim J-H, Chen M, Sasaki H, Sudo R (2003) Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. J Biosci Bioeng 96:285–290

    Article  CAS  PubMed  Google Scholar 

  • Kishida N, Kim J, Tsuneda S, Sudo R (2006) Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Res 40:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • Lemaire R, Marcelino M, Yuan Z (2008a) Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater. Biotechnol Bioeng 100:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Lemaire R, Yuan Z, Blackall LL, Crocetti GR (2008b) Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Environ Microbiol 10:354–363

    Article  CAS  PubMed  Google Scholar 

  • Marsili-Libelli S, Spagni A, Susini R (2008) Intelligent monitoring system for long-term control of sequencing batch reactors. Water Sci Technol 57:431–438

    Article  CAS  PubMed  Google Scholar 

  • McIlroy SJ, Porter K, Seviour RJ, Tillett D (2009) Extracting nucleic acids from activated sludge which reflect community population diversity. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 96:593–605

    CAS  Google Scholar 

  • Meinhold J, Filipe CDM, Daigger GT, Isaacs S (1999) Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci Technol 39:31–42

    CAS  Google Scholar 

  • Mino T, Van Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207

    Article  CAS  Google Scholar 

  • Nielsen AT, Liu W, Filipe C, Grady L Jr, Molin S, Stahl DA (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehmen A, Carvalho G, Freitas F, Reis MM (2010) Assessing the abundance and activity of denitrifying polyphosphate accumulating organisms through molecular and chemical techniques. Water Sci Technol 61:2061–2068

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Zhu G (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73:15–26

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, Nowka B, Richter A, Spieck E, Lebedeva E, Loy A, Wagner M, Daims H (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol 16:3055–3071

    Article  CAS  PubMed  Google Scholar 

  • Pronk M, de Kreuk MK, de Bruin B, Kamminga P, Kleerebezem R, van Loosdrecht MCM (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217

    Article  CAS  PubMed  Google Scholar 

  • Rotthauwe J, Witzel K (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. 63:4704–4712

  • Saad SA, Welles L, Abbas B, Lopez-Vazquez CM, Van Loosdrecht MC, Brdjanovic D (2016) Denitrification of nitrate and nitrite by “Candidatus Accumulibacter phosphatis” clade IC. Water Res 105:97–109

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Brdjanovic D, van Loosdrecht MCM (2004) Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38:3760–3768

    Article  CAS  PubMed  Google Scholar 

  • Spagni A, Buday J, Ratini P, Bortone G (2001) Experimental considerations on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes. Water Sci Technol 43:197–204

    CAS  PubMed  Google Scholar 

  • Third KA, Burnett N, Cord-Ruwisch R (2003) Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnol Bioeng 83:706–720

    Article  CAS  PubMed  Google Scholar 

  • Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213

  • Won SG, Ra CS (2011) Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles. Water Res 45:171–178

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol Bioeng 100:529–541

    Article  CAS  PubMed  Google Scholar 

  • Zeng RJ, Lemaire R, Yuan Z, Keller J (2003) Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng 84:170–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Dong F, Jiang T, Wei Y, Wang T, Yang F (2011) Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor. Enzym Microb Technol 49:215–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dries.

Ethics declarations

Funding

This study was funded by the Flanders Innovation and Entrepreneurship Agency (grant number 131325).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 287 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobbeleers, T., D’aes, J., Miele, S. et al. Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge. Appl Microbiol Biotechnol 101, 6829–6839 (2017). https://doi.org/10.1007/s00253-017-8415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8415-1

Keywords

Navigation