Log in

Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aird ELH, Brightwell G, Jones MA, Johnston AWB (1991) Identification of the exo loci required for exopolysaccharide synthesis in Agrobacterium radiobacter NCIB 11883. Microbiology 137(10):2287–2297

    CAS  Google Scholar 

  • Anguillesi A (2003) Molecular biology of curdlan biosynthesis by Agrobacterium sp. ATTC 31749. MSc thesis. La Trobe University, Melbourne

  • Bae SO, Sugano Y, Ohi K, Shoda M (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol 65(3):315–322

    Article  CAS  PubMed  Google Scholar 

  • Becker A (2015) Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 6

  • Becker A, Kleickmann A, Keller M, Arnold W, Pühler A (1993) Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and map** of promoters located on the exoHKLAMONP fragment. Mol Gen Genet 241(3–4):367–379

    CAS  PubMed  Google Scholar 

  • Bertram-Drogatz PA, Quester I, Becker A, Pühler A (1998) The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY. Mol Gen Genet 257(4):433–441

    Article  CAS  PubMed  Google Scholar 

  • Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezem M, de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11(9):723–732

    Article  CAS  Google Scholar 

  • Brightwell G, Hussain H, Tiburtius A, Yeoman KH, Johnston AWB (1995) Pleiotropic effects of regulatory ros mutants of Agrobacterium radiobacter and their interaction with Fe and glucose. Mol Plant-Microbe Interact 8(5):747–754

    Article  CAS  PubMed  Google Scholar 

  • Cangelosi GA, Hung LYNN, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169(5):2086–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Tait RC, Kado CI (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J Bacteriol 164(2):774–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 2:951–962

    Article  Google Scholar 

  • Farrand SK, van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53(5):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398

    Article  CAS  PubMed  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993) Genes needed for the modification, polimerization, export and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175(21):7045–7055

    CAS  PubMed  PubMed Central  Google Scholar 

  • González JE, Semino CE, Wang LX, Castellano-Torres LE, Walker GC (1998) Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc Natl Acad Sci U S A 95(23):13477–13482

    Article  PubMed  PubMed Central  Google Scholar 

  • González JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67(4):574–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12(11):7898–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** LH, Um HJ, Yin CJ, Kim YH, Lee JH (2008) Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J Biotechnol 138(3):80–87

    Article  CAS  PubMed  Google Scholar 

  • Jofre E, Becker A (2009) Production of succinoglycan polymer in Sinorhizobium meliloti is affected by SMb21506 and requires the N-terminal domain of ExoP. Mol Plant-Microbe Interact 22(12):1656–1668

    Article  CAS  PubMed  Google Scholar 

  • Hassler RA, Doherty DH (1990) Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prog 6(3):182–187

    Article  CAS  PubMed  Google Scholar 

  • Heckel BC, Tomlinson AD, Morton ER, Choi JH, Fuqua C (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196(18):3221–3233

    Article  PubMed  PubMed Central  Google Scholar 

  • Hisamatsu M, Ott I, Amemura A, Harada T, Nakanishi I, Kimura K (1977) Change in ability of Agrobacterium to produce water-soluble and water-insoluble β-glucans. Microbiology 103(2):375–379

    CAS  Google Scholar 

  • Hisamatsu M, Sano K, Amemura A, Harada T (1978) Acidic polysaccharides containing succinic acid in various strains of Agrobacterium. Carbohydr Res 61(1):89–96

    Article  CAS  Google Scholar 

  • Karnezis T, Karnezis T, Epa VC, Stone BA, Stanisich VA (2003) Topological characterization of an inner membrane (1 → 3)-β-D-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC 31749. Glycobiology 13(10):693–706

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Lee IY, Ko JH, Rhee YH, Park YH (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioeng 62(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Senechal A, Raffar M (1993) Composition deÂrivant d'un succinoglycane, son proceÂde de preÂparation et ses applications. EP 0 527 061 A1

  • Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65(11):5003–5008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Geng J, Cui D, Shu C, Zhang S, Yang J, Hu S (2011) Genome sequence of Agrobacterium tumefaciens strain F2, a bioflocculant-producing bacterium. J Bacteriol 193(19):5531–5531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-D-glucans. Appl Microbiol Biotechnol 68(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Keller M, Weng WM, Quandt J, Arnold W, Pühler A (1992) Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant-Microbe Interact 6(1):55–65

    Article  Google Scholar 

  • Nampoothiri KM, Singhania RR, Sabarinath C, Pandey A (2003) Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem 38(11):1513–1519

    Article  CAS  Google Scholar 

  • Ortiz Martinez C, Pereira Ruiz S, Carvalho Fenelon V, Rodrigues de Morais, G, Luciano Baesso, M, Matioli, G (2015) Characterization of curdlan produced by Agrobacterium sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt. J Sci Food Agric

  • Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signaling system. Mol Microbiol 57(3):629–639

    Article  PubMed  Google Scholar 

  • Ruffing AM, Castro-Melchor M, Hu WS, Chen RR (2011) Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749. J Bacteriol 193(16):4294–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Factories 11(1):1–13

    Article  Google Scholar 

  • Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177(6):1419–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6

  • Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46(4):1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factories 5(1):7

    Article  Google Scholar 

  • Stasinopoulos SJ, Fisher PR, Stone BA, Stanisich VA (1999) Detection of two loci involved in (1 → 3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology 9(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Stredansky M, Conti E, Bertocchi C, Navarini L, Matulova M, Zanetti F (1999) Fed-batch production and simple isolation of succinoglycan from Agrobacterium tumefaciens. Biotechnol Tech 13(1):7–10

    Article  CAS  Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39(1):243–270

    Article  CAS  PubMed  Google Scholar 

  • Tiburtius A, de Luca NG, Hussain H, Johnston AW (1996) Expression of the exoY gene, required for exopolysaccharide synthesis in Agrobacterium, is activated by the regulatory ros gene. Microbiology 142(9):2621–2629

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson AD, Ramey-Hartung B, Day TW, Merritt PM, Fuqua C (2010) Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiology 156(9):2670–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol 172(3):1640–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uttaro AD, Ielpi L, Ugalde RA (1993) Galactose metabolism in Rhizobiaceae: characterization of Agrobacterium tumefaciens exoB mutants. Microbiology 139(5):1055–1062

    CAS  Google Scholar 

  • van Kranenburg R, Marugg JD, van Swam II, Willem NJ, de Vos WM (1997) Molecular characterization of the plasmid encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24(2):387–397

    Article  PubMed  Google Scholar 

  • van Kranenburg R, van Swam I, Marugg JD, Kleerebezem M, de Vos WM (1999a) Exopolysaccharide biosynthesis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol 181(1):338–340

    PubMed  PubMed Central  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson N, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404

    Article  CAS  PubMed  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Olson MV (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Li A, Yang JX, Ma F, Chen H, Pi SS, Wei W (2015) N-3-oxo-octanoyl-homoserine lactone as a promotor to improve the microbial flocculant production by an exopolysaccharide bioflocculant-producing bacterium Agrobacterium tumefaciens F2. RSC Adv 5(109):89531–89538

    Article  CAS  Google Scholar 

  • Wu JR, Yu LJ, Zhan XB, Zheng ZY, Lu J, Lin CC (2012) NtrC-dependent regulatory network for curdlan biosynthesis in response to nitrogen limitation in Agrobacterium sp. ATCC 31749. Process Biochem 47(11):1552–1558

    Article  CAS  Google Scholar 

  • Yang JX, Wu D, Li A, Guo HJ, Chen H, Pi SS, Ma F (2016) The addition of N-hexanoyl-homoserine lactone to improve the microbial flocculant production of Agrobacterium tumefaciens strain F2, an exopolysaccharide bioflocculant-producing bacterium. Appl Biochem Biotechnol. doi:10.1007/s12010-016-2027-6

    Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium—a reply to Farrand et al. (2003). Int J Syst Evol Microbiol 53(5):1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 190(2):494–507

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wu J, Liu J, Zhan X, Zheng Z, Lin CC (2011a) Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol Bioprocess Eng 16(1):34–41

    Article  CAS  Google Scholar 

  • Yu LJ, Wu JR, Zheng ZZ, Lin CC, Zhan XB (2011b) Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Appl Biochem Microbiol 47(5):487–493

    Article  CAS  Google Scholar 

  • Yu XQ, Zhang C, Yang LP, Zhao LM, Lin C, Liu ZJ, Mao ZC (2015) CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93(2):525–531

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Zhan XB, Zheng ZY, Wu JR, Yu XB, Jiang Y, Lin CC (2011) Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC31749 under simulated dissolved oxygen gradients conditions. Appl Microbiol Biotechnol 91(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Zhan XB, Zheng ZY, Wu JR, English N, Yu XB, Lin CC (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 93(1):367–379

    Article  PubMed  Google Scholar 

  • Zheng ZY, Lee JW, Zhan XB, Shi Z, Wang L, Zhu L, Wu JR, Lin CC (2007) Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnol Bioprocess Eng 12(4):359–365

    Article  CAS  Google Scholar 

  • Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180(20):5398–5405

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 51578179), the Fundamental Research Funds for the Central Universities (No. HIT. NSRIF. 2015095) and the Postdoctoral Scientific Research Development Fund of Heilongjiang Province in 2014 (No. LBH-Q14076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ang Li or Jixian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Li, A., Ma, F. et al. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium . Appl Microbiol Biotechnol 100, 6183–6192 (2016). https://doi.org/10.1007/s00253-016-7650-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7650-1

Keywords

Navigation