Log in

Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to discover new nitrilases with useful activities, especially towards dinitriles that are precursors of high-value cyano acids. Genes coding for putative nitrilases of different origins (fungal, plant, or bacterial) with moderate similarities to known nitrilases were selected by mining the GenBank database, synthesized artificially and expressed in Escherichia coli. The enzymes were purified, examined for their substrate specificities, and classified into subtypes (aromatic nitrilase, arylacetonitrilase, aliphatic nitrilase, cyanide hydratase) which were largely in accordance with those predicted from bioinformatic analysis. The catalytic potential of the nitrilases for dinitriles was examined with cyanophenyl acetonitriles, phenylenediacetonitriles, and fumaronitrile. The nitrilase activities and selectivities for dinitriles and the reaction products (cyano acid, cyano amide, diacid) depended on the enzyme subtype. At a preparative scale, all the examined dinitriles were hydrolyzed into cyano acids and fumaronitrile was converted to cyano amide using E. coli cells producing arylacetonitrilases and an aromatic nitrilase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asano Y (2002) Overview of screening for new microbial catalysts and their uses in organic synthesis—selection and optimization of biocatalysts. J Biotechnol 94:65–72. doi:10.1016/S0168-1656(01)00419-9

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC (2009) Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies. Mol Biotechnol 41:35–41. doi:10.1007/s12033-008-9094-z

  • Basile LJ, Willson RC, Sewell BT, Benedik MJ (2008) Genome mining of cyanide degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol 80:427–435. doi:10.1007/s00253-008-1559-2

    Article  CAS  PubMed  Google Scholar 

  • Bayer S, Birkemeyer C, Ballschmiter M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Environ Microbiol 89:91–98. doi:10.1007/s00253-010-2831-9

    CAS  Google Scholar 

  • DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J Am Chem Soc 125:11476–11477. doi:10.1021/ja035742h

    Article  CAS  PubMed  Google Scholar 

  • Duan YT, Yao PY, Ren J, Han C, Li Q, Yuan J, Feng JH, Wu QQ, Zhu DM (2014) Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-pregabalin and (R)-baclofen. Sci China Chem 57:1164–1171. doi:10.1007/s11426-014-5139-2

    Article  CAS  Google Scholar 

  • Effenberger F, Osswald S (2001) Selective hydrolysis of aliphatic dinitriles to monocarboxylic acids by a nitrilase from Arabidopsis thaliana. Synthesis-Stuttgart:1866–1872

  • Gökce H, Bahceli S (2011) Quantum chemical computations of 1,3-phenylenediacetic acid. Spectrochim Acta, Part A 78:803–808. doi:10.1016/j.saa.2010.12.031

    Article  Google Scholar 

  • Heinemann U, Engels D, Bürger S, Kiziak C, Mattes R, Stolz A (2003) Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl Environ Microbiol 69:4359–4366. doi:10.1128/AEM.69.8.4359-4366.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol 23:475–482. doi:10.1016/S0141-0229(98)00076-3

    Article  CAS  Google Scholar 

  • Chauhan S, Wu S, Blumerman S, Fallon RD, Gavagan JE, DiCosimo R, Payne MS (2003) Purification, cloning, sequencing and over-expression in Escherichia coli of a regioselective aliphatic nitrilase from Acidovorax facilis 72W. Appl Microbiol Biotechnol 61:118–122. doi:10.1007/s00253-002-1192-4

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Martínková L (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575. doi:10.1007/s00253-006-0503-6

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Veselá AB, Petříčková A, Pasquarelli F, Pičmanová M, Rinágelová A, Bhalla TC, Pátek M, Martínková L (2013a) A comparative study of nitrilases identified by genome mining. Mol Biotechnol 54:996–1003. doi:10.1007/s12033-013-9656-6

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Martínková L (2013b) Erratum to: purification and characterization of a nitrilase from Aspergillus niger K10 (vol 73, pg 567(2006). Appl Microbiol Biotechnol 97:3745–3746. doi:10.1007/s00253-013-4743-y

    Article  CAS  PubMed  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648. doi:10.1099/mic.0.28246-0

  • Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2007) Maize nitrilases have a dual role in auxin homeostasis and β-cyanoalanine hydrolysis. J Exp Bot 58:4225–4233. doi:10.1093/jxb/erm279

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-Q, Zhang X-H, Xue Y-P, Xu M, Zheng Y-G (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)‑(−)-mandelic acid. Agric Food Chem 6:4685–4694. doi:10.1021/jf405683f

  • Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137. doi:10.1016/j.cbpa.2009.11.018

    Article  PubMed  Google Scholar 

  • Meth-Cohn O, Wang M-X (1997) Rationalisation of the regioselective hydrolysis of aliphatic dinitriles with Rhodococcus rhodochrous AJ270. Chem Commun:1041–1042. doi: 10.1039/a700859g

  • Mukherjee C, Zhu D, Biehl ER, Hua L (2006) Exploring the synthetic applicability of a cyanobacterium nitrilase as catalyst for nitrile hydrolysis. Eur J Org Chem:5238–5242. doi: 10.1002/ejoc.200600699

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3- purification and characterization. Eur J Biochem 194:765–772. doi:10.1111/j.1432-1033.1990.tb19467.x

    Article  CAS  PubMed  Google Scholar 

  • Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D (2013) Efficient production or R-(-)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 167:433–440. doi:10.1016/j.jbiotec.2013.07.024

  • Petříčková A, Veselá AB, Kaplan O, Kubáč D, Uhnáková B, Malandra A, Felsberg J, Rinágelová A, Weyrauch P, Křen V, Bezouška K, Martínková L (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 93:1553–1561. doi:10.1007/s00253-011-3525-7

    Article  PubMed  Google Scholar 

  • Piotrowski M, Schönfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621. doi:10.1074/jbc.M007890200

    Article  CAS  PubMed  Google Scholar 

  • Pouchert C, Behnke J, Sigma-Aldrich (1993) The Aldrich Library of 13C and 1H FT NMR Spectra. Chemical Co., Aldrich

    Google Scholar 

  • Rey P, Rossi J-C, Taillades J, Gros G, Nore O (2004) Hydrolysis of nitriles using an immobilized nitrilase: applications to the synthesis of methionine hydroxy analogue derivatives. J Agric Food Chem 52:8155–8162. doi:10.1021/jf048827q

    Article  CAS  PubMed  Google Scholar 

  • Rinágelová A, Kaplan O, Veselá AB, Chmátal M, Křenková A, Plíhal O, Pasquarelli F, Cantarella M, Martínková L (2014) Cyanide hydratase from Aspergillus niger K10: overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Proc Biochem 49:445–450. doi:10.1016/j.procbio.2013.12.008

    Article  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz LP, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436. doi:10.1128/AEM.70.4.2429-2436.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M (2009) Investigative mining of sequence data for novel enzymes: a case study with nitrilases. J Biotechnol 143:17–26. doi:10.1016/j.jbiotec.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727. doi:10.1111/j.1365-2672.2008.03941.x

    Article  CAS  PubMed  Google Scholar 

  • Vejvoda V, Šveda O, Kaplan O, Přikrylová V, Elišáková V, Himl M, Kubáč D, Pelantová H, Kuzma M, Křen V, Martínková L (2007) Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases. Biotechnol Lett 29:1119–1124. doi:10.1007/s10529-007-9364-z

    Article  CAS  PubMed  Google Scholar 

  • Vergne-Vaxelaire C, Bordier F, Fossey A, Besnard-Gonnet M, Debard A, Mariage A, Pellouin V, Perret A, Petit J-L, Stam M, Salanoubat M, Weissenbach J, De Berardinis V, Zaparucha A (2013) Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal 355:1763–1779. doi:10.1002/adsc.201201098

    Article  CAS  Google Scholar 

  • Veselá AB, Petříčková A, Weyrauch P, Martínková L (2013) Heterologous expression, purification and characterization of arylacetonitrilases from Nectria haematococca and Arthroderma benhamiae. Biocatal Biotransform 31:49–56. doi:10.3109/10242422.2012.758117

    Article  Google Scholar 

  • Veselá AB, Křenková A, Martínková L (2015) Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis. Mol Biotechnol 57:466–474. doi:10.1007/s12033-015-9840-y

    Article  PubMed  Google Scholar 

  • Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Müller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212:508–516. doi:10.1007/s004250000420

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:no. 14. doi:10.1186/1472-6750-13-14

  • Zhang, Z-J, Pan J., Liu J-F, Xu, J-H, He Y-C, Liu, Y-Y (2011) Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene–water biphasic system. J Biotechnol 152:24–29. doi:10.1016/j.jbiotec.2011.01.013

  • Zhu D, Mukherjee C, Biehl ER, Hua L (2007a) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 129:645–650. doi:10.1016/j.jbiotec.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Mukherjee C, Biehl ER, Hua L (2007b) Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance. Adv Synth Catal 349:1667–1670. doi:10.1002/adsc.200700067

    Article  CAS  Google Scholar 

  • Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333. doi:10.1016/j.jbiotec.2007.10.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Czech Science Foundation (No. P504/11/034), the Technology Agency of the Czech Republic (grant no. TA01021368), and the Institute of Microbiology of the Czech Academy of Sciences (No. RVO61388971).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Martínková.

Additional information

Alicja B. Veselá and Lenka Rucká contributed equally to this work.

Electronic Supplementary material

ESM 1

(PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselá, A.B., Rucká, L., Kaplan, O. et al. Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles. Appl Microbiol Biotechnol 100, 2193–2202 (2016). https://doi.org/10.1007/s00253-015-7023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7023-1

Keywords

Navigation