Log in

Application of cell co-culture system to study fat and muscle cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312

    Article  CAS  PubMed  Google Scholar 

  • Bader A, Knop E, Kern A, Boker K, Fruhanf N, Crome O, Esselmann H, Pape C, Kempka G, Sewing KF (1996) 3-D co-culture of hepatic sinusoidal cells with primary hepatocytes-design of an organotypical model. Exp Cell Res 226(1):223–233

    Article  CAS  PubMed  Google Scholar 

  • Barak H, Boyle SC (2011) Organ culture and immunostaining of mouse embryonic kidneys. Cold Spring Harb Protoc 2011(1)

  • Benbrook DM (2006) Organotypic cultures represent tumor microenvironment for drug testing. Drug Discov Today Dis Model 3(2):143–148

    Article  Google Scholar 

  • Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Boney CM, Moats-Staats BM, Stiles AD, D'Ercole AJ (1994) Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding proteins during adipogenesis. Endocrinology 135(5):1863–1868

    CAS  PubMed  Google Scholar 

  • Cantini M, Carraro U (1996) Control of cell proliferation by macrophage-myoblast interactions. Basic Appl Myol 6(6):483–488

    Google Scholar 

  • Cantini M, Massimino ML, Rapizzi E, Libera LD, Catani C, Carraro U (1994) Viability of myoblast-macrophage co-cultures. Basic Appl Myol 4(4):403–406

    Google Scholar 

  • Carlo AR, Michela P, Andrea D, Karolina A, Annalisa G, Marta S, Chiara F, Alberto M, Gabriella M, Mara C, Stefano S, Michelangelo C, Roberto V, De Coppi P (2010) Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity. PLoS ONE 5(1):e8523

    Article  Google Scholar 

  • Choi H, Myung K (2014) Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells. Cell Biol Int. doi:10.1002/cbin.10281

    Google Scholar 

  • Davies JA, Armstrong JE (2006) The anatomy of organogenesis: novel solutions to old problems. Prog Histochem Cytochem 40(3):165–176

    Article  PubMed  Google Scholar 

  • Dodson MV, Mathison BA, Mathison BD (1990) Effects of medium and substratum on ovine satellite cell attachment, proliferation and differentiation in vitro. Cell Differ Dev 29(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Dodson M, McFarland D, Bandman E, Dayton W, Yablonka-Reuveni Z, Greene E, Doumit M, Bergen W, Merkel R, Vierck J, Velleman S, Koumans J (1995) Status of satellite cell research in agriculture. Basic Appl Myol 5(1):5–9

    Google Scholar 

  • Dodson MV, Hossner KL, Vierck JL, Howard J (1996) Intercellular communication between muscle cells and 3T3-L1 preadipocytes. Basic Appl Myol 6(6):503–510

    Google Scholar 

  • Dodson MV, Vierck JL, Hossneff KL, Byrne K, McNamara JP (1997) The development and utility of a defined muscle and fat co-culture system. Tissue Cell 29(5):517–524

    Article  CAS  PubMed  Google Scholar 

  • Gondret F, Lebret B (2002) Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. J Anim Sci 80(12):3184–3193

    CAS  PubMed  Google Scholar 

  • Hasmall SC, West DA, Olsen K, Roberts RA (2000) Role of hepatic non-paraenchymal cells in the response of rat hepatocytes to the peroxisome proliferator nofenopin in vitro. Carcinogenesis 21(12):2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Holst D, Luquet S, Kristiansen K, Grimaldi PA (2003) Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Exp Cell Res 288(1):168–176

    Article  CAS  PubMed  Google Scholar 

  • Hossner KL, Yemm R, Vierck JL, Dodson MV (1997) Insulin like growth factor (IGF)-I and IGFBP secretion by ovine satellite cell strains grown alone or in co-culture with 3T3-L1 preadipocytes. In Vitro Cell Dev Biol 33(10):791–795

    Article  CAS  Google Scholar 

  • Jarett L, Wong EHA, Macaulay SL, Smith JA (1985) Insulin mediators from rat skeletal muscle has differential effects on insulin sensitive pathways of intact adipocytes. Science 227(4686):533–535

    Article  CAS  PubMed  Google Scholar 

  • Kausch C, Krutzfeldt J, Witke A, Rettig A, Bachmann O, Rett K, Matthaei S, Machicao F, Haring HU, Stumvoll M (2001) Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun 280(3):664–674

    Article  CAS  PubMed  Google Scholar 

  • Khademhosseini A, Langer R, Borensteing J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. PNAS 103:2480–2487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khetani SR, Bhatia SN (2006) Engineering tissues for in vitro applications. Curr Opin Biotechnol 17:524–531

    Article  CAS  PubMed  Google Scholar 

  • Krabbenhoft NT, Foss EA, Carraro M, Cantini U, Byrne M, Greene K, Dodson MV (1996) Clinical aspects of muscle regeneration: the satellite cell-macrophage connection. Equine Athlete 9(6):7–11

    Google Scholar 

  • Lai S, Durante M, Hartel C, Ma N, Wetzel T, Weyrather WK (2010) The influence of the oxygen status of tumor cells on the survival under co-culture conditions: preparatory measurements. GSI Scientific Report Health-20

  • Lau DCW, Shillabeer G, Li ZH, Wong KL, Varzaneh FE, Tough SC (1996) Paracrine interactions in adipose tissue development and growth. Int J Obes Relat Metab Disord 20:16–25

    Google Scholar 

  • Liu WF, Chen CS (2007) Cellular and multicellular form and function. Adv Drug Deliv Rev 59(13):1319–1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75(2):217–227

    Article  CAS  PubMed  Google Scholar 

  • Molnar GR, Dodson MV (1993) Satellite cells isolated from sheep skeletal muscle are heterogeneous. Basic Appl Myol 3(3):173–180

    Google Scholar 

  • Morikawa M, Green H, Lewis UJ (1984) Activity of human growth hormone and related polypeptides on the adipose conversion of 3T3 cells. Mol Cell Biol 4(2):228–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muthuraman P (2014a) Effect of cortisol on caspases in the co-cultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 173(4):980–988

    Article  CAS  PubMed  Google Scholar 

  • Muthuraman P (2014b) Effect of co-culturing on the myogenic and adipogenic marker gene expression. Appl Biochem Biotechnol 173(2):571–578

    Article  CAS  PubMed  Google Scholar 

  • Muthuraman P, Ravikumar S (2013) Impact of stress hormone on adipogenesis in the 3T3-L1 cells. Cytotechnology. 66(4):619–624

    Google Scholar 

  • Muthuraman P, Dawoon J, Hwang IH (2012) Co-culture of C2C12 and 3T3-L1 preadipocyte cells alters gene expression of calpains, caspases and heat-shock proteins. In Vitro Cell Dev Biol Anim 48(9):577–582

    Article  Google Scholar 

  • Muthuraman P, Hemalatha M, Ravikumar S, Vikramathithan J, Ganesh I, Ramkumar K (2013) Stress hormone on the mRNA Expression of myogenin, MyoD, Myf5, PAX3 and PAX7. Cytotechnology. doi:10.1007/s10616-013-9635-6

    Google Scholar 

  • Muthuraman P, Ravikumar S, Muthuviveganandavel V (2014) Effect of cortisol on calpains in the C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 172(6):3153–3162

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Ciaraldi TP, Lindgren K, Abrams-Carter L, Mudaliar S, Nikoulina SE, Tufari SR, Veerkamp JH, Vidal-Puig A, Henry RR (1998) Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-gamma. J Clin Endocrinol Metab 83(8):2830–2835

    CAS  PubMed  Google Scholar 

  • Park S, Baek K, Choi C (2013) Suppression of adipogenic differentiation by muscle cell-induced decrease in genes related to lipogenesis in muscle and fat co-culture system. Cell Biol Int 37(9):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Ramsay TG, White ME, Wolverton CK (1989) Insulin-like growth factor 1 induction of differentiation of porcine preadipocytes. J Anim Sci 67(9):2452–2459

    CAS  PubMed  Google Scholar 

  • Ravikumar S, Muthuraman P (2014) Cortisol effect on heat shock proteins in the C2C12 and 3T3-L1 cells. In Vitro Cell Dev Biol Anim. doi:10.1007/s11626-014-9774-x

  • Seyoum B, Fite A, Abou-Samra AB (2011) Effects of 3T3 adipocytes on interleukin-6 expression and insulin signaling in L6 skeletal muscle cells. Biochem Biophys Res Commun 410(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Stewart NT, Foss M, Carraro U, Cantint M, Byrne K, Vierck JL, Chen Y, Greene EA, Dodson MV (1997) Muscle regeneration is modulated by satellite cell-macrophage interactions at the site of muscle injury: prospective clinical applications. J Equine Vet Sci 17(4):172–177

    Article  Google Scholar 

  • Strohman RC, Bayne E, Spector D, Obinata T, Micou-Eastwood J (1990) Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell Dev Biol 26(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Vierck JL, McNamara JP, Hossner KL, Dodson MV (1995) Characterization of bovine skeletal muscle satellite cell strains in a defined culture medium formulated to enhance differentiation: fusion and the IGF-1 system. Basic Appl Myol 5(1):12–21

    Google Scholar 

  • Vierck JL, McNamara JP, Dodson MV (1996) Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts). In Vitro Cell Dev Biol 32(9):564–572

    Article  CAS  Google Scholar 

  • **aocum S (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 6:26

    Article  Google Scholar 

  • **aocum S, Michael BZ (2008) Calcitriol and calcium regulate cytokine production and adipocytes-macrophage cross-talk. J Nutr Biochem 19(6):392–399

    Article  Google Scholar 

Download references

Acknowledgments

It should be acknowledged that this work was supported by a grant for the FTA issues (Nos. PJ010170032014 and PJ008525), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inho Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, M., Hwang, I. Application of cell co-culture system to study fat and muscle cells. Appl Microbiol Biotechnol 98, 7359–7364 (2014). https://doi.org/10.1007/s00253-014-5935-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5935-9

Keywords

Navigation