Log in

Engineering and refolding of a novel trimeric fusion protein TRAIL-collagen XVIII NC1

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be a promising anticancer agent because its active form TRAIL trimer is able to induce apoptosis in different tumor cell lines while sparing normal cells. However, TRAIL trimer possesses a short half-life and low stability, which turns out to be a major obstacle for the development of clinical trials. In our present study, we constructed a recombined TRAIL trimer by genetic fusion of non-collagenous domain (NC1) of human collagen XVIII or its trimerization domain (TD) to C-terminus of TRAIL via a flexible linker, and then refolded the fusion proteins using a two-step refolding approach, namely a combination of dilution and gel filtration chromatography. As a result, both recombinant proteins, TRAIL-NC1 and TRAIL-TD, were expressed in Escherichia coli as inclusion bodies, and they exhibited difficultly to refold efficiently by conventional methods. Thereby, we applied a modified two-step refolding approach to refold fusion proteins. More than 55 % of TRAIL-NC1 and 90 % of TRAIL-TD protein activity was recovered during the two-step refolding approach, and their stability was also increased significantly. Also, size exclusion chromatography showed refolded TRAIL-NC1 was a trimer while TRAIL-TD, hexamer. However, both of them exerted good apoptosis activity on NCI-H460 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn JH, Lee YP, Rhee JS (1997) Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology. J Biotechnol 54(3):151–160. doi:10.1016/S0168-1656(97)01693-3

    Article  PubMed  CAS  Google Scholar 

  • Batas B, Chaudhuri JB (1996) Protein refolding at high concentration using size-exclusion chromatography. Biotechnol Bioeng 50(1):16–23. doi:10.1002/(SICI)1097-0290(19960405)50:1<16::AID-BIT3>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  • Batas B, Chaudhuri JB (1999) Considerations of sample application and elution during size-exclusion chromatography-based protein refolding. J Chromatogr A 864(2):229–236. doi:10.1016/S0021-9673(99)01030-4

    Article  PubMed  CAS  Google Scholar 

  • Batas B, Jones HR, Chaudhuri JB (1997) Studies of the hydrodynamic volume changes that occur during refolding of lysozyme using size-exclusion chromatography. J Chromatogr A 766(1–2):109–119. doi:10.1016/S0021-9673(96)01020-5

    PubMed  CAS  Google Scholar 

  • Bodmer JL, Meier P, Tschopp J, Schneider P (2000) Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 275(27):20632–20637. doi:10.1074/jbc.M909721199

    Article  PubMed  CAS  Google Scholar 

  • Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bachinger HP (2009) Crystal structure of human collagen XVIII trimerization domain: a novel collagen trimerization Fold. J Mol Biol 392(3):787–802. doi:10.1016/j.jmb.2009.07.057

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Rudolph R (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y) 9(2):157–162. doi:10.1038/nbt0291-157

    Article  CAS  Google Scholar 

  • Cardamone M, Puri NK, Brandon MR (1995) Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Biochemistry 34(17):5773–5794. doi:10.1021/bi00017a009

    Article  PubMed  CAS  Google Scholar 

  • Clark EDB (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9(2):157–163. doi:10.1016/S0958-1669(98)80109-2

    Article  PubMed  Google Scholar 

  • Ejima D, Watanabe M, Sato Y, Date M, Yamada N, Takahara Y (1999) High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coli. Biotechnol Bioeng 62(3):301–310. doi:10.1002/(SICI)1097-0290(19990205)62:3<301::AID-BIT6>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  • Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL, Schader MB, Untergasser A, Stremmel W, Walczak H (2006) Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12(8):2640–2646. doi:10.1158/1078-0432.CCR-05-2635

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Su Z, Janson JC (2001) Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. J Chromatogr A 918(2):311–318. doi:10.1016/S0021-9673(01)00766-X

    Article  PubMed  CAS  Google Scholar 

  • Hamaker KH, Liu J, Seely RJ, Ladisch CM, Ladisch MR (1996) Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor. Biotechnol Prog 12(2):184–189. doi:10.1021/bp950071f

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zhou H, Tang H, Luo Y (2006) Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin. J Biol Chem 281(2):1048–1057. doi:10.1074/jbc.M507745200

    Article  PubMed  CAS  Google Scholar 

  • Hevehan DL, De Bernardez Clark E (1997) Oxidative renaturation of lysozyme at high concentrations. Biotechnol Bioeng 54(3):221–230. doi:10.1002/(SICI)1097-0290(19970505)54:3<221::AID-BIT3>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T, Zhang H, Mountz JD, Koopman WJ, Kimberly RP, Zhou T (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7(8):954–960. doi:10.1038/91000

    Article  PubMed  CAS  Google Scholar 

  • Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6(5):564–567. doi:10.1038/75045

    Article  PubMed  CAS  Google Scholar 

  • Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7(4):383–385. doi:10.1038/86397

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Yamada H, Ueda T, Imoto T (1996) Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea. Protein Eng 9(5):461–465. doi:10.1093/protein/9.5.461

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285. doi:10.1016/S0092-8674(00)81848-6

    Article  PubMed  Google Scholar 

  • Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690. doi:10.1074/jbc.271.22.12687

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Chaturvedi V, Bonish B, Nickoloff BJ (2001) Avoiding premature apoptosis of normal epidermal cells. Nat Med 7(4):385–386. doi:10.1038/86401

    Article  PubMed  CAS  Google Scholar 

  • Qin JZ, Bacon PE, Chaturvedi V, Bonish B, Nickoloff BJ (2002) Pathways involved in proliferating, senescent and immortalized keratinocyte cell death mediated by two different TRAIL preparations. Exp Dermatol 11(6):573–583. doi:10.1034/j.1600-0625.2002.110610.x

    Article  PubMed  CAS  Google Scholar 

  • Rozanov DV, Savinov AY, Golubkov VS, Rozanova OL, Postnova TI, Sergienko EA, Vasile S, Aleshin AE, Rega MF, Pellecchia M, Strongin AY (2009) Engineering a leucine zipper-TRAIL homotrimer with improved cytotoxicity in tumor cells. Mol Cancer Ther 8(6):1515–1525. doi:10.1158/1535-7163.MCT-09-0202

    Article  PubMed  CAS  Google Scholar 

  • Schneider P (2000) Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods Enzymol 322:325–345. doi:10.1016/S0076-6879(00)22031-4

    Article  PubMed  CAS  Google Scholar 

  • Shalongo W, Ledger R, Jagannadham MV, Stellwagen E (1987) Refolding of denatured thioredoxin observed by size-exclusion chromatography. Biochemistry 26(11):3135–3141. doi:10.1021/bi00385a029

    Article  PubMed  CAS  Google Scholar 

  • Simmons T, Newhouse YM, Arnold KS, Innerarity TL, Weisgraber KH (1997) Human low density lipoprotein receptor fragment. Successful refolding of a functionally active ligand-binding domain produced in Escherichia coli. J Biol Chem 272(41):25531–25536. doi:10.1074/jbc.272.41.25531

    Article  PubMed  CAS  Google Scholar 

  • Stempfer G, Holl-Neugebauer B, Rudolph R (1996) Improved refolding of an immobilized fusion protein. Nat Biotechnol 14(3):329–334. doi:10.1038/nbt0396-329

    Article  PubMed  CAS  Google Scholar 

  • Vagenende V, Yap MG, Trout BL (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48(46):11084–11096. doi:10.1021/bi900649t

    Article  PubMed  CAS  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163. doi:10.1038/5517

    Article  PubMed  CAS  Google Scholar 

  • Wetlaufer DB, **e Y (1995) Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci 4(8):1535–1543. doi:10.1002/pro.5560040811

    Article  PubMed  CAS  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang C-P, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG (1995) Identification and characterization of a new member of the TNF family that induces Apoptosis. Immunity 3:673–682. doi:10.1016/1074-7613(95)90057-8

    Article  PubMed  CAS  Google Scholar 

  • Williams DC, Van Frank RM, Muth WL, Burnett JP (1982) Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science 215(4533):687–689. doi:10.1126/science.7036343

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Li P, Qian C, Li O, Zhou Y (2009) Trimeric coiled-coil domain of human pulmonary surfactant protein D enhances zinc-binding ability and biologic activity of soluble TRAIL. Mol Immunol 46(11–12):2381–2388. doi:10.1016/j.molimm.2009.03.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Natural Science Foundation of China (no. 81001477), National Science and Technology Major Projects for “Major New Drugs Innovation and Development” of China (no. 2012ZX09506001-004), and Zhejiang Provincial Natural Science Foundation of China (no. R2110231).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Naranmandura or Shu Qing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, L.Q., **e, Z.M., Tang, X.J. et al. Engineering and refolding of a novel trimeric fusion protein TRAIL-collagen XVIII NC1. Appl Microbiol Biotechnol 97, 7253–7264 (2013). https://doi.org/10.1007/s00253-012-4604-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4604-0

Keywords

Navigation