Log in

Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

By cell surface display of ModE protein that is a transcriptional regulator of operons involved in the molybdenum metabolism in Escherichia coli, we have constructed a molybdate-binding yeast (Nishitani et al., Appl Microbiol Biotechnol 86:641–648, 2010). In this study, the binding specificity of the molybdate-binding domain of the ModE protein displayed on yeast cell surface was improved by substituting the amino acids involved in oxyanion binding with other amino acids. Although the displayed S126T, R128E, and T163S mutant proteins adsorbed neither molybdate nor tungstate, the displayed ModE mutant protein (T163Y) abolished only molybdate adsorption, exhibiting the specific adsorption of tungstate. The specificity of the displayed ModE mutant protein (T163Y) for tungstate was increased by approximately 9.31-fold compared to the displayed wild-type ModE protein at pH 5.4. Therefore, the strategy of protein design and its cell surface display is effective for the molecular breeding of bioadsorbents with metal-specific adsorption ability based on a single species of microorganism without isolation from nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Gourley DG, Schuttelkopf AW, Anderson LA, Price NC, Boxer DH, Hunter WN (2001) Oxyanion binding alters conformation and quaternary structure of the C-terminal domain of the transcriptional regulator mode. Implications for molybdate-dependent regulation, signaling, storage, and transport. J Biol Chem 276:20641–20647

    Article  CAS  Google Scholar 

  • Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216

    Article  CAS  Google Scholar 

  • Hou YM, Kim R, Kim SH (1988) Expression of the mouse metallothionein-I gene in Escherichia coli: increased tolerance to heavy metals. Biochim Biophys Acta 951:230–234

    Article  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  CAS  Google Scholar 

  • Kuper J, Meyer zu Berstenhorst S, Vodisch B, Mendel RR, Schwarz G, Boxer DH (2003) In vivo detection of molybdate-binding proteins using a competition assay with ModE in Escherichia coli. FEMS Microbiol Lett 218:187–193

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2011a) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2011b) Molecular design of the microbial cell surface toward the recovery of metal ions. Curr Opin Biotechnol 22:427–433

    Article  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  • Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms — processes and importance for soil systems. Earth Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  CAS  Google Scholar 

  • McNicholas PM, Mazzotta MM, Rech SA, Gunsalus RP (1998) Functional dissection of the molybdate-responsive transcription regulator, ModE, from Escherichia coli. J Bacteriol 180:4638–4643

    CAS  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867

    CAS  Google Scholar 

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  CAS  Google Scholar 

  • Sayers Z, Brouillon P, Vorgias CE, Nolting HF, Hermes C, Koch MH (1993) Cloning and expression of Saccharomyces cerevisiae copper-metallothionein gene in Escherichia coli and characterization of the recombinant protein. Eur J Biochem 212:521–528

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A (2000a) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    CAS  Google Scholar 

  • Ueda M, Tanaka A (2000b) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2004) Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J Hazard Mater 113:223–230

    Article  CAS  Google Scholar 

  • Volesky B, Weber J, Park JM (2003) Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306

    Article  CAS  Google Scholar 

  • Wagner UG, Stupperich E, Kratky C (2000) Structure of the molybdate/tungstate binding protein mop from Sporomusa ovata. Structure 8:1127–1136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, K., Nishitani, T. & Ueda, M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96, 153–159 (2012). https://doi.org/10.1007/s00253-012-4069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4069-1

Keywords

Navigation