Log in

Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal secondary metabolites have been considered promising resources in the search for novel bioactive compounds. Given the high potential of fungi as genetic resources, it is essential to find an efficient way to link biosynthetic genes to the product in a heterologous system, because many genes for the secondary metabolite in the original strain are silent under standard laboratory conditions. In a previous study, we constructed a heterologous expression system for a biosynthetic gene cluster using Aspergillus oryzae as the host. To make the host more versatile for the expression of secondary metabolism genes, the expression levels of a global regulator, laeA, were increased by placing the A. oryzae laeA gene under the control of the constitutive active pgk promoter. In the A. oryzae overexpressing laeA, two clusters of heterologous biosynthetic genes [the monacolin K (MK) gene cluster from Monascus pilosus and the terrequinone A (TQ) gene cluster from Aspergillus nidulans] were successfully overexpressed, resulting in the production of the corresponding metabolite, MK or TQ. The successful production of secondary metabolites belonging to different structural groups, namely MK as a polyketide and TQ as a hybrid of amino acid and isoprenoid, indicated that the laeA-enriched A. oryzae was a versatile host for the heterologous expression of the biosynthetic gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone a biosynthesis through l-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3(9):584–592

    Article  CAS  Google Scholar 

  • Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus sp. Eukaryot Cell 3(2):527–535

    Article  CAS  Google Scholar 

  • Bouhired S, Weber M, Kempf-Sontag A, Keller NP, Hoffmeister D (2007) Accurate prediction of the Aspergillus nidulans terrequinone cluster boundaries using the transcriptional regulator LaeA. Fungal Genet Biol 44(11):1134–1145

    Article  CAS  Google Scholar 

  • Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, Wu MD, Yuan GF (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56(14):5639–5646

    Article  CAS  Google Scholar 

  • Chen YP, Yuan GF, Hsieh SY, Lin YS, Wang WY, Liaw LL, Tseng CP (2010) Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J Agric Food Chem 58(1):287–293

    Article  CAS  Google Scholar 

  • Chiang YM, Chang SL, Oakley BR, Wang CC (2010) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15(1):137–143

    Article  Google Scholar 

  • Collemare J, Billard A, Böhnert HU, Lebrun MH (2008) Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol Res 112:207–215

    Article  CAS  Google Scholar 

  • Correia T, Grammel N, Ortel I, Keller U, Tudzynski P (2003) Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol Chem Biol 10(12):1281–1292

    Article  Google Scholar 

  • Ehrlich KC, Yu J, Cotty PJ (2005) Aflatoxin biosynthetic gene clusters and flanking regions. J Appl Microbiol 99(3):518–527

    Article  CAS  Google Scholar 

  • Fujii I (2010) Functional analysis of fungal polyketide biosynthesis genes. J Antibiot 63:207–218

    Article  CAS  Google Scholar 

  • Gressler M, Zaehle C, Scherlach K, Hertweck C, Brock M (2011) Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. Chem Biol 18(2):198–209

    Article  CAS  Google Scholar 

  • Halo LM, Marshall JW, Yakasai AA, Song Z, Butts CP, Crump MP, Heneghan M, Bailey AM, Simpson TJ, Lazarus CM, Cox RJ (2008) Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Chembiochem 9(4):585–594

    Article  CAS  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24(2):393–416

    Article  CAS  Google Scholar 

  • ** FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239(1):79–85

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947

    Article  CAS  Google Scholar 

  • Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284(5418):1368–1372

    Article  CAS  Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107(6):2646–2651

    Article  CAS  Google Scholar 

  • Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91(2):214–225

    Article  Google Scholar 

  • Maiya S, Grundmann A, Li SM, Turner G (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7(7):1062–1069

    Article  CAS  Google Scholar 

  • Martín JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182(9):2355–2362

    Article  Google Scholar 

  • Pelaez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 49–92

    Google Scholar 

  • Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3(4):e50

    Article  Google Scholar 

  • Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65(1):106–118

    Article  CAS  Google Scholar 

  • Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106(5):466–472

    Article  CAS  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2009) Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol Lett 31(12):1911–1916

    Article  CAS  Google Scholar 

  • Seshime Y, Juvvdi PR, Tokuoka M, Koyama Y, Kitamoto K, Ebizuka Y, Fujii I (2009) Functional expression of the Aspergillus flavus PKS–NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Bioorg Med Chem 19:3288–3292

    Article  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T. (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol. 73(16):5097–5103

    Google Scholar 

  • Yamada O, Lee BR, Gomi K (1997) Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotechnol Biochem 61:1367–1369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Sports, Culture, Science and Technology (MEXT) and by a joint program in the field of biotechnology under the Japan Society for the Promotion of Science, the National Research Council of Thailand, and the National Science and Technology Development Agency of Thailand. This paper represents a portion of KS’s Ph.D. dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Nihira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM ppt (PPT 3097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, K., Kinoshita, H. & Nihira, T. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93, 2011–2022 (2012). https://doi.org/10.1007/s00253-011-3657-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3657-9

Keywords

Navigation