Log in

Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study isolated a novel erythritol-producing yeast strain, which is capable of growth at high osmolarity. Characteristics of the strain include asexual reproduction by multilateral budding, absence of extracellular starch-like compounds, and a negative Diazonium blue B color reaction. Phylogenetic analysis based on the 26S rDNA sequence and physiological analysis indicated that the strain belongs to the species Pseudozyma tsukubaensis and has been named P. tsukubaensis KN75. When P. tsukubaensis KN75 was cultured aerobically in a fed-batch culture with glucose as a carbon source, it produced 245 g/L of erythritol, corresponding to 2.86 g/L/h productivity and 61% yield, the highest erythritol yield ever reported by an erythritol-producing microorganism. Erythritol production was scaled up from a laboratory scale (7 L fermenter) to pilot (300 L) and plant (50,000 L) scales using the dissolved oxygen as a scale-up parameter. Erythritol production at the pilot and plant scales was similar to that at the laboratory scale, indicating that the production of erythritol by P. tsukubaensis KN75 holds commercial potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge, UK, pp 1139–1142

    Google Scholar 

  • Boekhout T (1995) Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. J Gen Appl Microbiol 41:359–366

    Article  CAS  Google Scholar 

  • Cunha M, Firme P, San Romao MV, Santos H (1992) Application of nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl Environ Microbiol 58:2271–2279

    Article  Google Scholar 

  • Goossen J, Röper H (1994) Erythritol, a new sweetener. Confect Prod 24:182–188

    Google Scholar 

  • Hanjny GJ, Smith JH, Garver JC (1964) Erythritol production by a yeast like fungus. Appl Microbiol 12:240–246

    Article  Google Scholar 

  • Hirata Y, Igarashi K, Ezaki S, Atomi H, Imanaka T (1999) High-level production of erythritol by strain 618A-01 isolated from pollen. J Biosci Bioeng 87:630–635

    Article  CAS  Google Scholar 

  • Ishizuka H, Wako H, Kasumi T, Sasaki T (1989) Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferment Bioeng 68:310–314

    Article  CAS  Google Scholar 

  • Kim KA, Lee JK, Kim SY, Oh DK (2000) Optimization of culture conditions for erythritol production by Torula sp. J Microbiol Biotechnol 10:69–74

    CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Lee JK, Ha SJ, Kim SY, Oh DK (2000) Increased erythritol production in Torula sp by Mn2+ and Cu2+. Biotechnol Lett 22:983–986

    Article  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2002) Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl Environ Microbiol 68:4534–4538

    Article  CAS  Google Scholar 

  • Lee JK, Jung HM, Kim SY (2003) 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Appl Environ Microbiol 69:3427–3434

    Article  CAS  Google Scholar 

  • Lin SJ, Wen CY, Liau JC, Chu WS (2001) Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochem 36:1249–1258

    Article  CAS  Google Scholar 

  • Marina AYA, Glaucia MP, Park YK (1993) Microbial transformation of sucrose and glucose to erythritol. Biotechnol Lett 15:383–388

    Article  Google Scholar 

  • Motulsky HJ, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. Graphpad Software Inc., San Diego, CA

    Google Scholar 

  • Munro IC, Bernt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bar EA, Modderman J (1998) Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem Toxicol 36:1139–1174

    Article  CAS  Google Scholar 

  • Oh DK, Cho CH, Lee JK, Kim SY (2001) Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. J Ind Microbiol Biotech 26:248–252

    Article  CAS  Google Scholar 

  • Park JB, Seo BC, Kim JR, Park YK (1998) Production of erythritol in fed-batch cultures of Trichosporon sp. J Ferment Bioeng 86:577–580

    Article  CAS  Google Scholar 

  • Pfeifer VF, Sohns VE, Conway HE, Lancaster EB, Dabic S, Griffin EL Jr (1960) Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind Eng Chem 52:201–205

    Article  CAS  Google Scholar 

  • Pharr DM, Stoop JMH, Studer-Feusi ME, Wiliamson JD, Massel MO, Cokling MA (1995) Carbon partitioning and source-sink interactions in plants. In: Madore MA, Lucas WJ (eds) Current topics in plant physiology. American Society of Plant Physiologist’s, Rockville, MD, USA, pp 180–185

    Google Scholar 

  • Roeper H, Goossens J (1993) Erythritol, a new raw material for food and non-food applications. Starch/Staerke 45:400–405

    Article  Google Scholar 

  • Ryu YW, Park CY, Park JB, Kim SY, Seo JH (2000) Optimization of erythritol production by Candida magnoliae in fed-batch culture. J Ind Microbiol Biotech 25:100–103

    Article  CAS  Google Scholar 

  • Seo JH, Ryu YW, Jung SR, Kim SY (2001) Fermentation processes for preparing erythritol by a high salt tolerant mutant of Candida sp. Patent US 6, 287,830 B1

  • Shindoh T, Sasaki Y, Miki H, Eguchi T, Hagiwara K, Ichikawa T (1988a) Determination of erythritol in fermented foods by high performance liquid chromatography. Shokuhin Eiseigaku Zasshi 29:419–422

    Article  Google Scholar 

  • Shindoh T, Sasaki Y, Miki H, Hagiwara K, Ichikawa T (1988b) Determination of erythritol in fruits and fermented foods by high performance liquid chromatography. Nippon Nogeikagaku Kaishi 62:623–626

    Google Scholar 

  • Shindoh T, Sasaki Y, Miki H, Eguchi T, Hagiwara K, Ichikawa T (1989) Identification of erythritol by HPLC and GC-MS and quantitative measurement in pulps of various fruits. Agric Food Chem 37:1474–1476

    Article  Google Scholar 

  • Tokuoka K, Ishizuka H, Wako K, Taniguchi H (1992) Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J Gen Appl Microbiol 38:145–155

    Article  CAS  Google Scholar 

  • Van der Auwera G, Chapelle S, De Wachter R (1994) Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett 338:133–136

    Article  Google Scholar 

  • Yoshida H, Sugawara T, Hayashi J (1984) Studies in free sugars and free sugar alcohols of mushrooms. Nippon Shokuhin Kogyo Gakkaishi 31:765–771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science & Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeya, M., Lee, KM., Tiwari, M.K. et al. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83, 225–231 (2009). https://doi.org/10.1007/s00253-009-1871-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1871-5

Keywords

Navigation