Log in

Prospects of using marine actinobacteria as probiotics in aquaculture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2008

Abstract

Chemotherapeutic agents have been banned for disease management in aquaculture systems due to the emergence of antibiotic resistance gene and enduring residual effects in the environments. Instead, microbial interventions in sustainable aquaculture have been proposed, and among them, the most popular and practical approach is the use of probiotics. A range of microorganisms have been used so far as probiotics, which include Gram-negative and Gram-positive bacteria, yeast, bacteriophages, and unicellular algae. The results are satisfactory and promising; however, to combat the latest infectious diseases, the search for a new strain for probiotics is essential. Marine actinobacteria were designated as the chemical factory a long time ago, and quite a large number of chemical substances have been isolated to date. The potent actinobacterial genera are Streptomyces; Micromonospora; and a novel, recently described genus, Salinispora. Despite the existence of all the significant features of a good probiont, actinobacteria have been hardly used as probiotics in aquaculture. However, this group of bacteria promises to supply the most potential probiotic strains in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson AS, Wellington EH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    CAS  PubMed  Google Scholar 

  • Antony-Babu S, Stach JEM, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie van Leeuwenhoek 94:63–74

    CAS  PubMed  Google Scholar 

  • Balasubramanian T, Lakshmanaperumalsamy P, Chandramohan D, Natarajan R (1979) Cellulolytic activity of streptomycetes isolated from the digestive tract of a marine borer. Indian J Mar Sci 8:111–113

    CAS  Google Scholar 

  • Balcazar JL, Decamp O, Vendrell D, De Blas I, Ruiz-Zarzuela I (2006) Health and nutritional properties of probiotics in fish and shellfish. Microb Ecol Health Nutri 18:65–70

    CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    CAS  Google Scholar 

  • Biyela PT, Lin J, Bezuidenhout CC (2004) The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Sci Technol 50:45–50

    CAS  PubMed  Google Scholar 

  • Brando PFB, Bull AT (2003) Nitrile hydrolyzing activities of deep-sea and terrestrial mycolate actinomycetes. Antonie van Leeuwenhoek 84:89–98

    Google Scholar 

  • Bull AT, Goodfellow M (2005) Editorial—Actinomycetes in the marine environment. Antonie van Leeuwenhoek 87:1

    Google Scholar 

  • Chandramohan D, Ramu S, Natarajan R (1972) Cellulolytic activity of marine streptomecetes. Curr Sci 41:245–246

    Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microb Mol Biol Rev 65:232–260

    CAS  Google Scholar 

  • Dang H, Ren J, Song L, Sun S, An L (2008) Dominant chloramphenicol-resistant bacteria and resistance gene in coastal marine waters of Jiaozhou Bay, China. World J Microbiol Biotechnol 24:209–217

    CAS  Google Scholar 

  • Das S (2007) Studies on benthic marine microbial diversity form the continental slope (200–1000 m depth) of Bay of Bengal (India). Ph.D. Thesis, CAS in Marine Biology, Annamalai University, India

  • Das S, Lyla PS, Ajmal Khan S (2006a) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 25:1325–1335

    Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2006b) Application of Streptomyces as a probiotic in the laboratory culture of Penaeus monodon (Fabricius). Isr J Aquac Bamidgeh 58:198–204

    Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2007) Fatty acid profiles of marine benthic microorganisms isolated from the continental slope of Bay of Bengal: a possible implications in the benthic food web. Ocean Sci J 42:247–254

    CAS  Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2008a) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26:166–177

    Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2008b) Characterization and identification of marine actinomycetes—existing systems, complexities and future directions. Natl Acad Sci Lett 31:149–160

    Google Scholar 

  • Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    CAS  PubMed  Google Scholar 

  • Demain AL (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33:486–495

    CAS  PubMed  Google Scholar 

  • Doroshenko EA, Zenova GM, Zvyagintsev DG, Sudnitsyn II (2005) Spore germination and mycelial growth of streptomycetes at different humidity levels. Microbiol 74:690–694

    CAS  Google Scholar 

  • Ellaiah P, Adinarayana K, Babu KN, Thaer A, Srinivasulu B, Prabhakar T (2002) Bio-active actinomycetes from marine sediments off Bay of Bengal near Machilipatnam. Geobios 29:97–100

    Google Scholar 

  • Ellaiah P, Ramana T, Raju KVVSNB, Sujatha P, Sankar AU (2004) Investigation on marine actinomycetes from Bay of Bengal near Kakinada coast of Andhra Pradesh. Asian J Microbiol Biotechnol Environ Sci 6:53–56

    Google Scholar 

  • FAO (2007) The state of world fisheries and aquaculture 2006. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–357

    CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Develo** a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals, a review. J Appl Bacteriol 66:365–378

    CAS  PubMed  Google Scholar 

  • Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, Torii K, Hasegawa T, Ohta M (2003) Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol 69:5336–5342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12:287–292

    CAS  PubMed  Google Scholar 

  • Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191:259–270

    Google Scholar 

  • Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodfellow M, Haynes JA (1984) Actinomycetes in marine sediments. In: Oritz-Oritz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, New York, pp 453–472

    Google Scholar 

  • Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman L, van Rijn J (2008) Identification of conditions underlying production of geosmin and 2-methylisoborneol in a recirculating system. Aquaculture 279:85–91

    CAS  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    CAS  PubMed  Google Scholar 

  • Heald SC, Brando PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolizing Rhodococcus strains. Antonie van Leeuwenhoek 80:169–183

    CAS  PubMed  Google Scholar 

  • Howgate P (2004) Tainting of farmed fish by geosmin and 2- methyl-iso-borneol: a review of sensory aspects and of uptake/depuration. Aquaculture 234:155–181

    CAS  Google Scholar 

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642

    Google Scholar 

  • Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best Pract Res Clin Gastroenterol 18:299–313

    PubMed  Google Scholar 

  • Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie van Leeuwenhoek 94:51–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    PubMed  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    CAS  PubMed  Google Scholar 

  • Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 128:203–209

    Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14

    Google Scholar 

  • Klausen C, Nicolaisen MH, Strobel BW, Warnecke F, Nielsen JL, Jorgensen NOG (2005) Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds. FEMS Microbiol Ecol 52:265–278

    CAS  PubMed  Google Scholar 

  • Kumar SS, Philip R, Achuthankutty CT (2006) Antiviral property of marine actinomycetes against white spot syndrome virus in penaeid shrimps. Curr Sci 91:807–811

    Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    CAS  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    CAS  Google Scholar 

  • Maeda M, Nogami K, Kanematsu M, Hirayama K (1997) The concept of biological control methods in aquaculture. Hydrobiologia 358:285–290

    Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 71:7019–7028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Rutherford LT, Hodson RE (1995) Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol 61:3695–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty DJW (1997) The role of microorganisms in aquaculture ponds. Aquaculture 151:333–349

    Google Scholar 

  • Moriarty D (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358

    Google Scholar 

  • Mukherjee G, Sen SK (2006) Purification, characterization and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr Microbiol 53:265–269

    CAS  PubMed  Google Scholar 

  • Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544

    CAS  PubMed  Google Scholar 

  • Nonomura H (1974) Key for classification and identification of 458 species of the Streptomycetes included in ISP. J Ferment Technol 52:78–92

    Google Scholar 

  • Panigrahi A, Azad IS (2007) Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish Physiol Biochem 33:429–440

    CAS  Google Scholar 

  • Parker RB (1974) Probiotics, the other half of the antibiotics story. Anim Nutr Health 29:4–8

    Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    CAS  PubMed  Google Scholar 

  • Pisano MA, Sommer MJ, Lopez MM (1986) Application of pretreatments for the isolation of bioactive actinomycetes from marine sediments. Appl Microbiol Biotechnol 25:285–288

    Google Scholar 

  • Pisano MA, Sommer MJ, Taras L (1992) Bioactivity of chitinolytic actinomycetes of marine origin. Appl Microbiol Biotechnol 36:553–555

    CAS  Google Scholar 

  • Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191:271–288

    CAS  Google Scholar 

  • Salminen S, Ouwehand A, Benno Y, Lee YK (1999) Probiotics: how should they be defined? Trends Food Sci Tech 10:107–110

    CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Raine NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urakawa H, Tsukamoto KK, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiol 145:3305–3315

    CAS  Google Scholar 

  • Veiga M, Esparis A, Fabregas J (1983) Isolation of cellulolytic actinomycetes from marine sediments. Appl Environ Microbiol 46:286–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231:145–152

    CAS  PubMed  Google Scholar 

  • Wang Y-B, Jian-Rong L, Junda L (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture doi:https://doi.org/10.1016/j.aquaculture.2008.06.002

    Google Scholar 

  • Westerdahl A, Olsson J, Kjelleberg S, Conway P (1991) Isolation and characterization of turbot (Scophthalmus maximus) associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 57:2223–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ST, Lanning S, Wellington EMH (1984) Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of actinomycetes. Acdemic, London, pp 481–528

    Google Scholar 

  • Wood S, Williams ST, White WR (2001) Microbes as a source of earthy flavours in potable water—a review. Int Biodeterior Biodegrad 48:26–40

    CAS  Google Scholar 

  • Yang J, Chen L, Sun L, Yu J, ** Q (2007) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36:D539–D542

    PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Park Y-K, Lee S, Choi D, Oh TK, Hur C-G, Kim JF (2006) Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res 35:D395–D400

    PubMed  PubMed Central  Google Scholar 

  • You J, Cao LX, Liu GF, Zhou SN, Tan HM, Lin YC (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21:679–682

    Google Scholar 

  • You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou S (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

An Endeavour Research Fellowship to one of the authors (S.D.) by the Department of Education, Employment and Workplace Relations, Australian Government, to carry out Postdoctoral research at the University of Tasmania is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Additional information

An erratum to this article can be found at https://doi.org/10.1007/s00253-008-1747-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Ward, L.R. & Burke, C. Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81, 419–429 (2008). https://doi.org/10.1007/s00253-008-1731-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1731-8

Keywords

Navigation