Log in

ɛ-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces albulus NBRC14147 produces ɛ-poly-l-lysine (ɛ-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of ɛ-PL, limited information is available regarding its biosynthesis; the l-lysine molecule is directly utilized for ɛ-PL biosynthesis. In most bacteria, l-lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as l-lysine and/or l-threonine. S. albulus NBRC14147 can produce a large amount of ɛ-PL (1–3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient l-lysine for ɛ-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of l-lysine and l-threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in ɛ-PL productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166

    Article  CAS  Google Scholar 

  • Cuadrado Y, Fernandez M, Recio E, Aparicio JF, Martin JF (2004) Characterization of the askasd operon in aminoethoxyvinylglycine-producing Streptomyces sp. NRRL 5331. Appl Microbiol Biotechnol 64:228–236

    Article  CAS  Google Scholar 

  • Follettie MT, Peoples OP, Agoropoulou C, Sinskey AJ (1993) Gene structure and expression of the Corynebacterium flavum N13 ask–asd operon. J Bacteriol 175:4096–4103

    Article  CAS  Google Scholar 

  • Hamano Y, Nicchu I, Hoshino Y, Kawai T, Nakamori S, Takagi H (2005) Development of gene delivery systems for the ɛ-poly-l-lysine producer, Streptomyces albulus. J Biosci Bioeng 99:636–641

    Article  CAS  Google Scholar 

  • Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H (2006) Biological function of the pld gene product that degrades å-poly-l-lysine in Streptomyces albulus. Appl Microbiol Biotechnol 72:173–181

    Article  CAS  Google Scholar 

  • Hernando-Rico V, Martin JF, Santamarta I, Liras P (2001) Structure of the ask–asd operon and formation of aspartokinase subunits in the cephamycin producer ‘Amycolatopsis lactamdurans’. Microbiology 147:1547–1555

    Article  CAS  Google Scholar 

  • Hitchcock MJ, Hodgson B, Linforth JL (1980) Regulation of lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. J Bacteriol 142:424–432

    Article  CAS  Google Scholar 

  • Itzhaki RF (1972) Colorimetric method for estimating polylysine and polyarginine. Anal Biochem 50:569–574

    Article  CAS  Google Scholar 

  • Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ɛ-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194

    Article  CAS  Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204

    Article  CAS  Google Scholar 

  • Kawai T, Kubota T, Hiraki J, Izumi Y (2003) Biosynthesis of ɛ-poly-l-lysine in a cell-free system of Streptomyces albulus. Biochem Biophys Res Commun 311:635–640

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Kobashi N, Nishiyama M, Yamane H (2001) Characterization of aspartate kinase III of Bacillus subtilis. Biosci Biotechnol Biochem 65:1391–1394

    Article  CAS  Google Scholar 

  • Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in l-threonine production. Biosci Biotechnol Biochem 65:1149–1154

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Shiio I (1982) Metabolic regulation and over-production of amino acids. In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of microbial products. Academic, London, pp 463–472

    Google Scholar 

  • Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem (Tokyo) 65:849–859

    Article  CAS  Google Scholar 

  • Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41:1807–1809

    CAS  Google Scholar 

  • Shima S, Sakai H (1981a) Poly-l-lysine produced by Streptomyces. III. Chemical studies. Agric Biol Chem 45:2503–2508

    CAS  Google Scholar 

  • Shima S, Sakai H (1981b) Poly-l-lysine produced by Streptomyces. II. Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502

    CAS  Google Scholar 

  • Shima S, Matsuoka H, Sakai H (1982) Inactivation of bacteriopharges by ɛ-poly-l-lysine produced by Streptomyces. Agric Biol Chem 46:1917–1919

    CAS  Google Scholar 

  • Shima S, Oshima S, Sakai H (1983) Biosynthesis of ɛ-poly-l-lysine by washed mycelium of Streptomyces albulus No. 346. Nippon Nogei KagakuKaishi 57:221–226

    Article  CAS  Google Scholar 

  • Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ɛ-poly-l-lysine. J Antibiot (Tokyo) 37:1449–1455

    Article  CAS  Google Scholar 

  • Theze J, Margarita D, Cohen GN, Borne F, Patte JC (1974) Map** of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol 117:133–143

    Article  CAS  Google Scholar 

  • Tunca S, Yilmaz EI, Piret J, Liras P, Ozcengiz G (2004) Cloning, characterization and heterologous expression of the aspartokinase and aspartate semialdehyde dehydrogenase genes of cephamycin C-producer Streptomyces clavuligerus. Res Microbiol 155:525–534

    Article  CAS  Google Scholar 

  • Zhang JJ, Paulus H (1990) Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. J Bacteriol 172:4690–4693

    Article  CAS  Google Scholar 

  • Zhang JJ, Hu FM, Chen NY, Paulus H (1990) Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J Bacteriol 172:701–708

    Article  CAS  Google Scholar 

  • Zhang W, Jiang W, Zhao G, Yang Y, Chiao J (1999) Sequence analysis and expression of the aspartokinase and aspartate semialdehyde dehydrogenase operon from rifamycin SV-producing Amycolatopsis mediterranei. Gene 237:413–419

    Article  CAS  Google Scholar 

  • Zhang WW, Jiang WH, Zhao GP, Yang YL, Chiao JS (2000) Expression in Escherichia coli, purification and kinetic analysis of the aspartokinase and aspartate semialdehyde dehydrogenase from the rifamycin SV-producing Amycolatopsis mediterranei U32. Appl Microbiol Biotechnol 54:52–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from Chisso Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Hamano or H. Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamano, Y., Nicchu, I., Shimizu, T. et al. ɛ-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76, 873–882 (2007). https://doi.org/10.1007/s00253-007-1052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1052-3

Keywords

Navigation