Log in

Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis

  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2004

Abstract

Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g−1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g−1 h−1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Y ethanol) decreased from 0.34 g g−1 to 0.025 g g−1 and Y xylitol increased from 0.15 g g−1 to 0.87 g g−1 (α=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g−1 and 0.58 g g−1 h−1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A–D.
Fig. 4.

Similar content being viewed by others

References

  • Barbosa MFS, Medeiros MB, Mancilha IM de, Schneider H, Lee H (1988) Screening for yeasts for production xylitol from some factors which affect xylitol yield in Candida guillermondi. J Ind Microbiol 3:241–251

    CAS  Google Scholar 

  • Berovic M (1999) Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng 64:552–557

    Article  CAS  PubMed  Google Scholar 

  • Bruinenburg PM, Bot PHM de, Dijken JP van, Scheffers, WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18:287–292

    CAS  Google Scholar 

  • Choi J-H, Moon K-H, Ryu Y-W, Seo J-H (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628

    Article  CAS  Google Scholar 

  • Chung IS, Lee YY (1986) Effect of oxygen and redox potential on d-xylose fermentation by non-growing cells of Pachysolen tannophilus. Enzyme Microb Technol 8:503–507

    Article  CAS  Google Scholar 

  • Hashimoto SI, Katsumata R (1999) Mechanism of alanine hyperproduction by Arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth aerobic conditions. Appl Environ Microbiol 65:2781–2783

    CAS  PubMed  Google Scholar 

  • Kastner JR, Roberts RS (1990) Simultaneous fermentation of d-xylose and glucose by Candida shehatae. Biotechnol Lett 12:57–60

    CAS  Google Scholar 

  • Kastner JR, Ahmad M, Jones WJ, Roberts RS (1992) Viability of Candida shehatae in d-xylose fermentations with added ethanol. Biotechnol Bioeng 40:1282–1285

    CAS  Google Scholar 

  • Kastner JR, Roberts RS, Jones WJ (1999) Oxygen starvation induces cell death in d-xylose Candida shehatae fermentations, but not in glucose. Appl Microbiol Biotechnol 51:780–783

    Article  CAS  PubMed  Google Scholar 

  • Kastner JR, Eiteman MA, Lee SA. (2001) Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnol Lett 23:1663–1668

    Article  CAS  Google Scholar 

  • Kim EK, Roberts RS (1991) Rate equations for the vigorous stationary phase fermentation of citric acid by Saccharomyces lipolytica. Biotechnol Bioeng 37:985–988

    CAS  Google Scholar 

  • Kim JH, Ryu YW, Seo JH (1999) Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J Ind Microbiol Biotechnol 22:181–186

    Article  CAS  Google Scholar 

  • Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19

    Article  CAS  PubMed  Google Scholar 

  • Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425

    Article  CAS  PubMed  Google Scholar 

  • Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:440–444

    CAS  PubMed  Google Scholar 

  • Radjai MK, Hatch RT, Cadman TW (1984) Optimisation of amino acid production by automatic self tuning digital control of redox potential. Biotechnol Bioeng Symp 14: 657–666

    CAS  Google Scholar 

  • Rose AH, Harrison JS (1989) Metabolism and physiology of yeasts. (The yeasts, vol 3) Academic Press, New York

  • Schneider H (1989) Conversion of pentoses to ethanol by yeasts and fungi. Crit Rev Biotechnol 9:2–41

    Google Scholar 

  • Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345

    Article  CAS  PubMed  Google Scholar 

  • Von Weymarn N, Kiviharju K, Leisola M (2002) High-level production of d-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  PubMed  Google Scholar 

  • Walton AZ, Stewart JD (2002) An Efficient enzymatic baeyer-villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 18:262–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported through the Traditional Industries, FoodPac Program (State of Georgia, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Kastner.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00253-004-1583-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastner, J.R., Eiteman, M.A. & Lee, S.A. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis . Appl Microbiol Biotechnol 63, 96–100 (2003). https://doi.org/10.1007/s00253-003-1320-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1320-9

Keywords

Navigation