Log in

Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460–3465, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen JF (1992) Protein-phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Barzda V, de Grauw CJ, Vroom J, Kleima FJ, van Grondelle R, van Amerongen H, Gerritsen HC (2001) Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys J 81:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochimica Et Biophysica Acta Bioenerg 1807:864–877

    Article  CAS  Google Scholar 

  • Cho F, Govindjee (1970a) Fluorescence spectra of Chlorella in the 295–77 degree K range. Biochim Biophys Acta 205:371–378

    Article  CAS  PubMed  Google Scholar 

  • Cho F, Govindjee (1970b) Low-temperature (4–77 degrees K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216:151–161

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    Article  CAS  PubMed  Google Scholar 

  • Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta Bioenerg 1273:150–158

    Article  Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Drop B, Yadav KNS, Boekema EJ, Croce R (2014) Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Barbagallo RP, Bergo E, Barbato R, Forti G (2001) Photoinhibition of Chlamydomonas reinhardtii in state 1 and state 2—damages to the photosynthetic apparatus under linear and cyclic electron flow. J Biol Chem 276:22251–22257

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix JD (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274:30987–30994

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Caldiroli G (2005) State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition. Plant Physiol 137:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobets B, van Grondelle R (2001) Energy transfer and trap** in photosystem I. Biochimica Et Biophysica Acta Bioenerg 1507:80–99

    Article  CAS  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome F and Plastocyanin—their sequence in photosynthetic electron transport chain of Chlamydomonas Reinhardtti. Proc Natl Acad Sci USA 54:1665–9000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Minagawa J (2007) Dissociation of light-harvesting complex II from photosystem II supercomplex during state transitions in Chlamydomonas reinhardtii. Photosynth Res 91:252

    Google Scholar 

  • Iwai M, Takahashi Y, Minagawa J (2008) Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20:2177–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Yokono M, Inada N, Minagawa J (2010) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci USA 107:2337–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kargul J, Turkina MV, Nield J, Benson S, Vener AV, Barber J (2005) Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J 272:4797–4806

    Article  CAS  PubMed  Google Scholar 

  • Laptenok SP, Borst JW, Mullen KM, van Stokkum IHM, Visser AJWG, van Amerongen H (2010) Global analysis of forster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Phys Chem Chem Phys 12:7593–7602

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Knox RS (1991) Studies of excitation energy transfer within the green alga Chlamydomonas reinhardtii and its mutants at 77 K. Photosynth Res 27:157–168

    CAS  PubMed  Google Scholar 

  • Melkozernov AN, Lin S, Blankenship RE (2000) Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the Cyanobacterium synechocystis sp. PCC 6803. Biochemistry 39:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J (2011) State transitions—The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochimica Et Biophysica Acta Bioenerg 1807:897–905

    Article  CAS  Google Scholar 

  • Mullen KM, van Stokkum IHM (2007) TIMP: An R package for modeling multi-way spectroscopic measurements. J Stat Softw 18(3):1–46

    Article  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluoresence in Porphyridium cruentum. Biochimica et Biophysica Acta (BBA) Bioenerg 172:242–251

    Article  CAS  Google Scholar 

  • Nagy G, Unnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci USA 111:5042–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Palacios MA, Standfuss J, Vengris M, van Oort BF, van Stokkum IHM, Kuhlbrandt W, van Amerongen H, van Grondelle R (2006) A comparison of the three isoforms of the light-harvesting complex II using transient absorption and time-resolved fluorescence measurements. Photosynth Res 88:269–285

    Article  CAS  PubMed  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem-II. Biophys J 54:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snellenburg JJ, Laptenok SP, Seger R, Mullen KM, van Stokkum IHM (2012) Glotaran: a java-based graphical user interface for the R package TIMP. J Stat Softw 49:1–22

    Article  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006a) Identification of the mobile light-harvesting complex II polypeptides for state transitions. Plant Cell Physiol 47:S105

    Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006b) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1–8, Article ID 1954. doi:10.1038/ncomms2954

    PubMed  PubMed Central  Google Scholar 

  • Unlu C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci USA 111:3460–3465

    Article  PubMed  PubMed Central  Google Scholar 

  • van Amerongen H, Croce R (2013) Light harvesting in photosystem II. Photosynth Res 116:251–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Amerongen H, Valkunas L, Van Grondelle R (2000) Photosynthetic excitons. World Scientific, Singapore

    Book  Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532

    Article  PubMed  Google Scholar 

  • van Oort B, Amunts A, Borst JW, van Hoek A, Nelson N, van Amerongen H, Croce R (2008) Picosecond fluorescence of intact and dissolved PSI–LHCI crystals. Biophys J 95:5851–5861

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oort B, Murali S, Wientjes E, Koehorst RBM, Spruijt RB, van Hoek A, Croce R, van Amerongen H (2009) Ultrafast resonance energy transfer from a site-specifically attached fluorescent chromophore reveals the folding of the N-terminal domain of CP29. Chem Phys 357:113–119

    Article  Google Scholar 

  • van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochimica Et Biophysica Acta Bioenerg 1658:262

    Article  Google Scholar 

  • Van Stokkum IH, Van Oort B, Van Mourik F, Gobets B, Van Amerongen H (2008) (Sub)-Picosecond spectral evolution of fluorescence studied with a synchroscan streak-camera system and target analysis Biophysical techniques in photosynthesis. Springer, Netherlands, pp 223–240

    Google Scholar 

  • Wientjes E, van Stokkum IH, van Amerongen H, Croce R (2011) The role of the individual Lhcas in photosystem I excitation energy trap**. Biophys J 101:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    Article  CAS  PubMed  Google Scholar 

  • Williams WP, Allen JF (1987) State-1/state-2 changes in higher-plants and algae. Photosynth Res 13:19–45

    Article  CAS  PubMed  Google Scholar 

  • Wlodarczyk LM, Snellenburg JJ, Ihalainen JA, van Grondelle R, van Stokkum IH, Dekker JP (2015) Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga. Biophys J 108:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollman FA, Delepelaire P (1984) Correlation between changes in light energy-distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii. J Cell Biol 98:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by The Netherlands Organization for Scientific Research (NWO) via the Council for Chemical Sciences (HvA) and also partly supported by the BioSolar Cells Programme of The Netherlands Ministry of Economic Affairs Agriculture and Innovation and by the Foundation for Fundamental Research on Matter (FOM).

The authors would like to thank Roberta Croce (VU University Amsterdam) for useful discussions and financial support for I.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert van Amerongen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlü, C., Polukhina, I. & van Amerongen, H. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2. Eur Biophys J 45, 209–217 (2016). https://doi.org/10.1007/s00249-015-1087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1087-9

Keywords

Navigation