Log in

Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Lipid rafts, the functional microdomains in the cell membrane, are believed to exist as liquid-ordered (Lo) phase domains along with the liquid-disordered (Ld) phase of the bulk of the cell membranes. We have examined the lipid order in model and natural membranes by time-resolved fluorescence of trimethylammonium-1,6-diphenylhexatriene incorporated into the membranes. The lipid phases were discerned by the limiting anisotropy, rotational diffusion rate and distribution of the fluorescence lifetime. In dipalmitoylphosphatidylcholine (DPPC)-cholesterol mixtures the gel phase exhibited higher anisotropy and a two-fold slower rotational diffusion rate of the probe as compared to the Ld phase. On the other hand, the Lo phase exhibited higher limiting anisotropy but a rotational diffusion rate comparable to the Ld phase. The Ld and Lo phases elicited unimodal distribution of lifetimes with distinct mean values and their co-existence in phospholipid-cholesterol mixtures was reflected as a biphasic change in the width of the lifetime distribution. Global analysis of the lifetimes yielded a best fit with two lifetimes which were identical to those observed in single Lo or Ld phases, but their fractional contribution varied with cholesterol concentration. Attributing the shorter and longer lifetime components to the Ld and Lo phases, respectively, the extent of the Lo/Ld phase domains in the membranes was estimated by their fractional contribution to the fluorescence decay. In ternary mixtures of egg PC-gangliosides-cholesterol, the gangliosides induced heterogeneity in the membrane but the Ld phase prevailed. The Lo phase properties were observed only in the presence of cholesterol. Results obtained in the plasma membrane and detergent-resistant membrane fractions (DRMs) isolated from U-87 MG cells revealed that DRMs mainly possess the Lo phase; however, a substantially large proportion of plasma membrane also exists in the Lo phase. Our data show that, besides cholesterol, the membrane proteins play a significant role in the organization of lipid rafts and, furthermore, a considerable amount of heterogeneity is present among the lipid rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–d.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

DPPC:

dipalmitoylphosphatidylcholine

DRM:

detergent-resistant membrane fraction

EPC:

egg phosphatidylcholine

GSL:

glycosphingolipid

Ld :

liquid-disordered phase domains

Lo :

liquid-ordered phase domains

MBCD:

methyl-β-cyclodextrin

PBS:

phosphate buffered saline

PM:

plasma membrane

TMA-DPH:

trimethylammonium-1,6-diphenylhexatriene

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  CAS  PubMed  Google Scholar 

  • Almeida PF, Vaz WLC, Thompson TE (1992) Lateral diffusion and percolation in two-phase, two component lipid bilayers. Topology of the solid phase domains in-plane and across the lipid bilayers. Biochemistry 31:6739–6747

    CAS  PubMed  Google Scholar 

  • Amundson DM, Zhou M (1999) Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 38:43–52

    Article  CAS  PubMed  Google Scholar 

  • Barrow DA, Lentz BR (1985) Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay. Biophys J 48:221–234

    CAS  PubMed  Google Scholar 

  • Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234:466–468

    CAS  Google Scholar 

  • Beecham JM, Gratton E, Ameloot M, Knutson JR, Brand L (1991) In: Lackowicz JR (ed) Topics in fluorescence spectroscopy, Plenum Press, New York, pp 241–301

    Google Scholar 

  • Bernsdorff CA, Wolf A, Winter R, Gratton E (1997) Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys J 72:1264–1277

    CAS  PubMed  Google Scholar 

  • Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    CAS  PubMed  Google Scholar 

  • Brown DA and Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    CAS  PubMed  Google Scholar 

  • Bunow MR, Bunow B (1979) Phase behavior of ganglioside-lecithin mixtures, relation to dispersion of gangliosides in membranes. Biophys J 27:325–337

    CAS  PubMed  Google Scholar 

  • Derry DM, Wolfe LS (1967) Gangliosides in isolated neurons and glial cells. Science 158:1450–1452

    CAS  PubMed  Google Scholar 

  • Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1 and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA 98:10642–10647

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:30745–30748

    CAS  PubMed  Google Scholar 

  • Friedrichson T, Kurzchalia TV (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394:802–805

    Article  CAS  PubMed  Google Scholar 

  • Ge M, Field KA, Aneja R, Holowka D, Baird B, Freed JH (1999) Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J 77:925–933

    PubMed  Google Scholar 

  • Gidwani A, Holowka D, Baird B (2001) Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry 40:12422–12429

    Article  CAS  PubMed  Google Scholar 

  • Gorodinsky A, Harris DA (1995) Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol 129:619–627

    CAS  PubMed  Google Scholar 

  • Guerold B, Massarelli R, Forster V, Frevsz L, Dreyfus H (1992) Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells. J Neurosci Res 32:110–115

    CAS  PubMed  Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542

    Google Scholar 

  • Hinz HJ, Korner O, Nicolau C (1981) Influence of ganglioside GM1 and GD1a on structural and thermotropic properties of small 1,2-dipalmitoyl L-α phosphatidylcholine vesicles. Biochim Biophys Acta 643:557–571

    Article  CAS  PubMed  Google Scholar 

  • Huang TH, Lee CW, Das Gupta SK, Blume A, Griffin RG (1993) A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Biochemistry 32:13277–13287

    CAS  PubMed  Google Scholar 

  • Huang Z, Haughland RP (1991) Partition coefficients of fluorescent probes with phospholipid membranes. Biochem Biophys Res Commun 181:166–171

    CAS  PubMed  Google Scholar 

  • Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom HW, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    CAS  PubMed  Google Scholar 

  • Joshi PG, Mishra S (1992) Galactocerebroside mediates Ca2+ signaling in cultured glioma cells. Brain Res 597:108–113

    CAS  PubMed  Google Scholar 

  • Kasahara K, Sanai Y (1999) Possible roles of glycosphingolipids in lipid rafts. Biophys Chem 82:121–127

    Article  CAS  PubMed  Google Scholar 

  • Korlach J, Schwille P, Webb WW, Feigensen GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461–8466

    Article  CAS  PubMed  Google Scholar 

  • Kurzchalia TV, Parton RG (1999). Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431

    Article  CAS  PubMed  Google Scholar 

  • Lentz BR, Barenholz Y, Thompson TE (1976). Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidyl-choline liposomes. Biochemistry 15:4529–4537

    CAS  PubMed  Google Scholar 

  • Lentz BR, Barrow DA, Hoechli M (1980) Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. Biochemistry 19:1943–1954

    CAS  PubMed  Google Scholar 

  • Mateo CR, Acuna U, Brochon JC (1995) Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J 68:121–127

    PubMed  Google Scholar 

  • Mitchell DC, Litman BJ (1998) Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J 75:896–908

    PubMed  Google Scholar 

  • Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA (1999) Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 274:34459–34466

    Article  CAS  PubMed  Google Scholar 

  • Prendergast FG, Haugland RP, Callahan PJ (1981) 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338

    CAS  PubMed  Google Scholar 

  • Ravichandra B, Joshi PG (1999) Gangliosides asymmetrically alter the membrane order in cultured PC-12 cells. Biophys Chem 76:117–132

    Article  CAS  PubMed  Google Scholar 

  • Rawat SS, Mukherjee S, Chattopadhyay A (1997) Micellar organization and dynamics: a wavelength selective fluorescence approach. J Phys Chem 101:1922–1929

    Article  CAS  Google Scholar 

  • Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479

    CAS  PubMed  Google Scholar 

  • Rodgers W, Crise B, Rose JK (1994) Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14:5384–5391

    CAS  PubMed  Google Scholar 

  • Sanganahalli BG, Joshi PG, Joshi NB (2000) Differential effects of tricyclic anti-depressant drugs on membrane dynamics: a fluorescence spectroscopic study. Life Sci 6:81–90

    Article  Google Scholar 

  • Sankaram MB, Thompson TE (1991) Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci USA 88:8686–8690

    CAS  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134

    CAS  PubMed  Google Scholar 

  • Sharma M, Joshi PG, Joshi NB (1997) Alterations in plasma membrane of glioblastoma cells by photodynamic action of merocyanine 540. Biochim Biophys Acta 1323:272–280

    Article  CAS  PubMed  Google Scholar 

  • Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–395

    CAS  PubMed  Google Scholar 

  • Sillerud LO, Schafer DE, Yu RK, Konigsberg WH (1979) Calorimetric properties of mixtures of ganglioside GM1 and dipalmitoylphosphatidylcholine. J Biol Chem 254:10876–10880

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasan R, Joshi PG, Joshi NB (1997) Structural perturbations induced by photodynamic action of porphyrin aggregates on plasma membrane and microsomes of glioblastoma cells. J Photosci 4:41–48

    CAS  Google Scholar 

  • Straume M, Litman BJ (1987) Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 26:5121–5126

    CAS  PubMed  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  PubMed  Google Scholar 

  • Vist MR, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464

    CAS  PubMed  Google Scholar 

  • Vyas KA, Patel HV, Vyas AA, Schnaar RL (2001) Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem 382:241–250

    CAS  PubMed  Google Scholar 

  • Wang TY, Leventis R, Silvius JR (2000) Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into "lipid rafts". Biophys J 79:919–933

    CAS  PubMed  Google Scholar 

  • Williams BW, Stubbs CD (1988) Properties influencing fluorophore lifetime distributions in lipid bilayers. Biochemistry 27:7994–7999

    Google Scholar 

  • **ang TH, Anderson BD (1998) Phase structures of binary lipid bilayers as revealed by permeability of small molecules. Biochim Biophys Acta 1370:64–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti G. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, M., Mishra, S. & Joshi, P.G. Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study. Eur Biophys J 32, 381–391 (2003). https://doi.org/10.1007/s00249-003-0281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0281-3

Keywords

Navigation