Log in

Multilayer Networks Assisting to Untangle Direct and Indirect Pathogen Transmission in Bats

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The importance of species that connect the different types of interactions is becoming increasingly recognized, and this role may be related to specific attributes of these species. Multilayer networks have two or more layers, which represent different types of interactions, for example, between different parasites and hosts that are nonetheless connected. The understanding of the ecological relationship between bats, ectoparasites, and vector-borne bacteria could shed some light on the complex transmission cycles of these pathogens. In this study, we investigated a multilayer network in Brazil formed by interactions between bat-bacteria, bat-ectoparasite, and ectoparasite-bacteria, and asked how these interactions overlap considering different groups and transmission modes. The multilayer network was composed of 31 nodes (12 bat species, 14 ectoparasite species, and five bacteria genera) and 334 links, distributed over three layers. The multilayer network has low modularity and shows a core-periphery organization, that is, composed of a few generalist species with many interactions and many specialist species participating in few interactions in the multilayer network. The three layers were needed to accurately describe the multilayer structure, while aggregation leads to loss of information. Our findings also demonstrated that the multilayer network is influenced by a specific set of species that can easily be connected to the behavior, life cycle, and type of existing interactions of these species. Four bat species (Artibeus lituratus, A. planirostris, Phyllostomus discolor, and Platyrrhinus lineatus), one ectoparasite species (Steatonyssus) and three bacteria genera (Ehrlichia, hemotropic Mycoplasma and Neorickettsia) are the most important species for the multilayer network structure. Finally, our study brings an ecological perspective under a multilayer network approach on the interactions between bats, ectoparasites, and pathogens. By using a multilayer approach (different types of interactions), it was possible to better understand these different ecological interactions and how they affect each other, advancing our knowledge on the role of bats and ectoparasites as potential pathogen vectors and reservoirs, as well as the modes of transmission of these pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nat Ecol Evol 1:0101. https://doi.org/10.1038/s41559-017-0101

    Article  Google Scholar 

  2. Kinsley AC, Rossi G, Silk MJ, VanderWaal K (2020) Multilayer and multiplex networks: an introduction to their use in veterinary epidemiology. Front Vet Sci 7:596. https://doi.org/10.3389/fvets.2020.00596

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Domenico M, Granell C, Porter MA, Arenas A (2016) The physics of spreading processes in multilayer networks. Nat Phys 12:901–906. https://doi.org/10.1038/nphys3865

    Article  CAS  Google Scholar 

  4. Mühldorfer K (2013) Bats and bacterial pathogens: a review. Zoonoses Public Health 60:93–103. https://doi.org/10.1111/j.1863-2378.2012.01536.x

    Article  PubMed  Google Scholar 

  5. Reeves WK, Beck J, Orlova MV, Daly JL, Pippin K, Revan F, Loftis AD (2016) Ecology of bats, their ectoparasites, and associated pathogens on Saint Kitts Island. J Med Entomol 53:1218–1225. https://doi.org/10.1093/jme/tjw078

    Article  CAS  PubMed  Google Scholar 

  6. Jentsch PC, Anand M, Bauch CT (2018) Spatial correlation as an early warning signal of regime shifts in a multiplex disease-behaviour network. J Theor Biol 448:17–25. https://doi.org/10.1016/j.jtbi.2018.03.032

    Article  PubMed  Google Scholar 

  7. Silk MJ, Drewe JA, Delahay RJ, Weber N, Steward LC, Wilson-Aggarwal J, Boots M, Hodgson DJ, Croft DP, McDonald RA (2018) Quantifying direct and indirect contacts for the potential transmission of infection between species using a multilayer contact network. Behav 155:731–757. https://doi.org/10.1163/1568539X-00003493

    Article  Google Scholar 

  8. Silk MJ, Hodgson DJ, Rozins C, Croft DP, Delahay RJ, Boots M, McDonald RA (2019) Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Phil Trans R Soc B 374:20180211. https://doi.org/10.1098/rstb.2018.0211

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hervías-Parejo S, Tur C, Heleno R, Nogales M, Timóteo S, Traveset A (2020) Species functional traits and abundance as drivers of multiplex ecological networks: first empirical quantification of inter-layer edge weights. Proc R Soc B 287:20202127. https://doi.org/10.1098/rspb.2020.2127

    Article  PubMed  PubMed Central  Google Scholar 

  10. Timóteo S, Correia M, Rodríguez-Echeverría S, Freitas H, Heleno R (2018) Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes. Nat Commun 9:140. https://doi.org/10.1038/s41467-017-02658-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Domenico M (2022) Multilayer networks: analysis and visualization: introduction to muxViz with R. Springer International Publishing, Cham

    Book  Google Scholar 

  12. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, MedelliÌn RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, De Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, VieÌ J-C, Williamson EA, Wyatt SA, **e Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230. https://doi.org/10.1126/science.1165115

    Article  CAS  PubMed  Google Scholar 

  13. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19:531–545. https://doi.org/10.1128/cmr.00017-06

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nogueira MR, de Lima IP, Moratelli R, da Tavares V, Gregorin R, Peracchi AL (2014) Checklist of Brazilian bats, with comments on original records. Check List 10:808–821. https://doi.org/10.15560/10.4.808

    Article  Google Scholar 

  15. Garbino GST, Gregorin R, Lima IP, Loureiro L, Moras LM, Moratelli R, Nogueira MR, Pavan AC, Tavares VC, do Nascimento MC, Peracchi AL (2020) Updated checklist of Brazilian bats: versão 2020. Comitê da Lista de Morcegos do Brasil—CLMB. https://www.sbeq.net/lista-de-especies. Accessed 28 Mar 2022

  16. Misra V (2020) Bats and viruses. Lancet Infect Dis 20:1380. https://doi.org/10.1016/s1473-3099(20)30743-x

    Article  CAS  PubMed Central  Google Scholar 

  17. Bai Y, Kosoy MY, Recuenco S, Alvarez D, Moran D, Turmelle A, Ellison J, Garcia DL, Estevez A, Lindblade KA, Rupprecht CE (2011) Bartonella spp. in bats, Guatemala. Emerg Infect Dis 17:1269–1272. https://doi.org/10.3201/eid1707.101867

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bai Y, Gómez J, Kosoy MY, Recuenco S, Osikowicz LM, Rupprecht C, Gilbert AT (2012) Prevalence and diversity of Bartonella spp. in bats in Peru. Am J Trop Med Hyg 87:518–523. https://doi.org/10.4269/ajtmh.2012.12-0097

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dick CW, Dittmar K (2014) Parasitic bat flies (Diptera: Streblidae and Nycteribiidae): host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds) Bats (Chiroptera) as vectors of diseases and parasites. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 131–155

    Chapter  Google Scholar 

  20. Marshall AG (1981) The ecology of ectoparasitic insects. Academic Press, London, New York

    Google Scholar 

  21. Graciolli G, Azevedo AA, Árzua M, Barros-Battesti DM, Linardi PM (2008) Artrópodos ectoparasitos de morcegos no Brasil. In: Pacheco SM, Marques RV, Esbérard CEL (eds) Morcegos do Brasil: biologia, sistemática, ecologia e conservação. Armazém Digital, 123–137

  22. Dick CW, Patterson BD (2006) Bat flies: obligate ectoparasites of bats. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites. Springer Japan, Tokyo, 179–194

  23. Horak IG, Camicas J-L, Keirans JE (2003) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): a world list of valid tick names. In: Jongejan F, Kaufman WR (eds) Ticks and tick-borne pathogens. Springer, Netherlands, pp 27–54

    Chapter  Google Scholar 

  24. Sándor AD, Mihalca AD, Domşa C, Péter Á, Hornok S (2021) Argasid ticks of palearctic bats: distribution, host selection, and zoonotic importance. Front Vet Sci 8:684737. https://doi.org/10.3389/fvets.2021.684737

    Article  PubMed  PubMed Central  Google Scholar 

  25. Silva C de L, Valim MP, Graciolli G (2017) Ácaros ectoparasitos de morcegos no estado de Mato Grosso do Sul, Brasil. Iheringia, Sér Zool 107:.https://doi.org/10.1590/1678-4766e2017111

  26. Bassini-Silva R, Huang-Bastos M, Welbourn C, Ochoa R, Barros-Battesti DM, Jacinavicius FC (2021) Batmanacarus robini, n. gen., n. sp. (Trombidiformes: Trombiculidae) collected parasitizing a ghost-faced bat (Chiroptera: Mormoopidae) from a cave in Trinidad and Tobago. Syst Parasitol 98:277–283. https://doi.org/10.1007/s11230-021-09976-2

    Article  PubMed  Google Scholar 

  27. Orlova MV, Klimov PB, Orlov OL, Kruskop SV, Lebedev VS (2021) New geographic and host records of spinturnicid mites (Mesostigmata: Spinturnicidae) in Asia, with description of the protonymph of Spinturnix tylonycterisi. Int J Acarol 47:361–365. https://doi.org/10.1080/01647954.2021.1912177

    Article  Google Scholar 

  28. Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT (2014) Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 20:960–967. https://doi.org/10.3201/eid2006.130956

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lilley TM, Veikkolainen V, Pulliainen AT (2015) Molecular detection of Candidatus Bartonella hemsundetiensis in bats. Vector Borne Zoonotic Dis 15:706–708. https://doi.org/10.1089/vbz.2015.1783

    Article  PubMed  Google Scholar 

  30. Lilley TM, Wilson CA, Bernard RF, Willcox EV, Vesterinen EJ, Webber QMR, Kurpiers L, Prokkola JM, Ejotre I, Kurta A, Field KA, Reeder DM, Pulliainen AT (2017) Molecular detection of Candidatus Bartonella mayotimonensis in North American bats. Vector Borne Zoonotic Dis 17:243–246. https://doi.org/10.1089/vbz.2016.2080

    Article  PubMed  Google Scholar 

  31. Hornok S, Szőke K, Meli ML, Sándor AD, Görföl T, Estók P, Wang Y, Tu VT, Kováts D, Boldogh SA, Corduneanu A, Sulyok KM, Gyuranecz M, Kontschán J, Takács N, Halajian A, Epis S, Hofmann-Lehmann R (2019) Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the old and new worlds. Parasites Vectors 12:50. https://doi.org/10.1186/s13071-019-3303-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Descloux E, Mediannikov O, Gourinat A-C, Colot J, Chauvet M, Mermoud I, Desoutter D, Cazorla C, Klement-Frutos E, Antonini L, Levasseur A, Bossi V, Davoust B, Merlet A, Goujart M-A, Oedin M, Brescia F, Laumond S, Fournier P-E, Raoult D (2021) Flying fox hemolytic fever, description of a new zoonosis caused by Candidatus Mycoplasma haemohominis. Clin Infect Dis 73:e1445–e1453. https://doi.org/10.1093/cid/ciaa1648

    Article  CAS  PubMed  Google Scholar 

  33. Afonso E, Goydadin A-C (2018) Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat ( Rhinolophus hipposideros ) guano. Epidemiol Infect 146:1253–1258. https://doi.org/10.1017/S0950268818001279

    Article  CAS  PubMed  Google Scholar 

  34. Pusterla N, Johnson EM, Chae JS, Madigan JE (2003) Digenetic trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever. J Helminthol 77:335–339. https://doi.org/10.1079/joh2003181

    Article  CAS  PubMed  Google Scholar 

  35. Gibson KE, Rikihisa Y, Zhang C, Martin C (2005) Neorickettsia risticii is vertically transmitted in the trematode Acanthatrium oregonense and horizontally transmitted to bats. Environ Microbiol 7:203–212. https://doi.org/10.1111/j.1462-2920.2004.00683.x

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda P, Seki MC, Carrasco AOT, Rudiak LV, Miranda JMD, Gonçalves SMM, Hoppe EGL, Albuquerque ACA, Teixeira MMG, Passos CE, Werther K, Machado RZ, André MR (2017) Evidence and molecular characterization of Bartonella spp. and hemoplasmas in neotropical bats in Brazil. Epidemiol Infect 145:2038–2052. https://doi.org/10.1017/S0950268817000966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ikeda P, Marinho Torres J, Perles L, Lourenço EC, Herrera HM, de Oliveira CE, Zacarias Machado R, André MR (2020) Intra- and inter-host assessment of Bartonella diversity with focus on non-hematophagous bats and associated ectoparasites from Brazil. Microorganisms 8:1822. https://doi.org/10.3390/microorganisms8111822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ikeda P, Torres JM, Placa AJV, de Mello VVC, Lourenço EC, Herrera HM, de Oliveira CE, Hemsley C, Titball RW, Machado RZ, André MR (2021) Molecular survey of anaplasmataceae agents and coxiellaceae in non-hematophagous bats and associated ectoparasites from Brazil. Parasitologia 1:197–209. https://doi.org/10.3390/parasitologia1040021

    Article  Google Scholar 

  39. Ikeda P, Torres JM, Lourenço EC, Albery GF, Herrera HM, de Oliveira CE, Machado RZ, André MR (2022) Molecular detection and genotype diversity of hemoplasmas in non-hematophagous bats and associated ectoparasites sampled in peri-urban areas from Brazil. Acta Trop 225:106203. https://doi.org/10.1016/j.actatropica.2021.106203

    Article  CAS  PubMed  Google Scholar 

  40. André MR, Gutiérrez R, Ikeda P, Amaral RB, Sousa KCM, Nachum-Biala Y, Lima L, Teixeira MMG, Machado RZ, Harrus S (2019) Genetic diversity of Bartonella spp. in vampire bats from Brazil. Transbound Emerg Dis 66:2329–2341. https://doi.org/10.1111/tbed.13290

    Article  CAS  PubMed  Google Scholar 

  41. do Amaral RB, Lourenço EC, Famadas KM, Garcia AB, Machado RZ, André MR (2018) Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil. PLoS One 13:e0198629. https://doi.org/10.1371/journal.pone.0198629

  42. Braga M do SCO, Gonçalves LR, Silva TMV da, Costa FB, Pereira JG, Santos LS dos, Carvalho Neta AV de, Arruda RCN de, Mesquita ETK de C, Chaves DP, Melo FA, Lopes JL, Martins RTB, Lima MS, Amaral RB do, Machado RZ, André MR (2020) Occurrence of Bartonella genotypes in bats and associated Streblidae flies from Maranhão state, northeastern Brazil. Rev Bras Parasitol Vet 29:e014420. https://doi.org/10.1590/s1984-29612020088

  43. Telford SR, Wormser GP (2010) Bartonella spp. transmission by ticks not established. Emerg Infect Dis 16:379–384. https://doi.org/10.3201/eid1603.090443

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Domenico M, Porter MA, Arenas A (2015) MuxViz: a tool for multilayer analysis and visualization of networks. J Complex Netw 3:159–176. https://doi.org/10.1093/comnet/cnu038

    Article  Google Scholar 

  45. De Domenico M, Nicosia V, Arenas A, Latora V (2015) Structural reducibility of multilayer networks. Nat Commun 6:6864. https://doi.org/10.1038/ncomms7864

    Article  CAS  PubMed  Google Scholar 

  46. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  47. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond, B, Biol Sci 345:101–118. https://doi.org/10.1098/rstb.1994.0091

    Article  CAS  PubMed  Google Scholar 

  48. Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padrón B (2012) Evaluating sampling completeness in a desert plant-pollinator network: sampling a plant-pollinator network. J Anim Ecol 81:190–200. https://doi.org/10.1111/j.1365-2656.2011.01883.x

    Article  PubMed  Google Scholar 

  49. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity ( H ill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  50. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878. https://doi.org/10.1126/science.1184819

    Article  CAS  PubMed  Google Scholar 

  51. Magnani M, Rossi L, Vega D (2021) Analysis of multiplex social networks with R. J Stat Soft 98:. https://doi.org/10.18637/jss.v098.i08

  52. R Core Team (2021) R: a language and environment for statistical computing. https://www.R-project.org/. Accessed 29 Mar 2022

  53. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–7646. https://doi.org/10.1073/pnas.1018985108

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174. https://doi.org/10.1016/j.physrep.2009.11.002

    Article  Google Scholar 

  55. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44. https://doi.org/10.1016/j.physrep.2016.09.002

    Article  Google Scholar 

  56. Collins LM, Dent CW (1988) Omega: a general formulation of the Rand Index of cluster recovery suitable for non-disjoint solutions. Multivariate Behav Res 23:231–242. https://doi.org/10.1207/s15327906mbr2302_6

    Article  CAS  PubMed  Google Scholar 

  57. Hanteer O, Magnani M (2020) Unspoken assumptions in multi-layer modularity maximization. Sci Rep 10:11053. https://doi.org/10.1038/s41598-020-66956-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Magnani M, Hanteer O, Interdonato R, Rossi L, Tagarelli A (2022) Community detection in multiplex networks. ACM Comput Surv 54:1–35. https://doi.org/10.1145/3444688

    Article  Google Scholar 

  59. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2013) Vegan: community ecology package. https://CRAN.R-project.org/package=vegan. Accessed 29 Mar 2022

  60. Dickison ME, Magnani M, Rossi L (2016) Multilayer social networks. Cambridge University Press, New York, NY

    Book  Google Scholar 

  61. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  62. De Domenico M, Solé-Ribalta A, Omodei E, Gómez S, Arenas A (2015) Ranking in interconnected multilayer networks reveals versatile nodes. Nat Commun 6:6868. https://doi.org/10.1038/ncomms7868

    Article  CAS  PubMed  Google Scholar 

  63. Allesina S, Pascual M (2009) Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput Biol 5:e1000494. https://doi.org/10.1371/journal.pcbi.1000494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galimberti E, Bonchi F, Gullo F, Lanciano T (2020) Core decomposition in multilayer networks: theory, algorithms, and applications. ACM Trans Knowl Discov Data 14:1–40. https://doi.org/10.1145/3369872

    Article  Google Scholar 

  65. Kong Y-X, Shi G-Y, Wu R-J, Zhang Y-C (2019) k-core: theories and applications. Phys Rep 832:1–32. https://doi.org/10.1016/j.physrep.2019.10.004

    Article  Google Scholar 

  66. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6:888–893. https://doi.org/10.1038/nphys1746

    Article  CAS  Google Scholar 

  67. Patil I (2021) Visualizations with statistical details: the “ggstatsplot” approach. JOSS 6:3167. https://doi.org/10.21105/joss.03167

  68. Stephen Dumler J, Rikihisa Y, Dasch GA (2015) Anaplasma. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria, 1st edn. Wiley, pp 1–15

    Google Scholar 

  69. Reeves WK, Dowling APG, Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol 38:181–188. https://doi.org/10.1007/s10493-006-0007-1

    Article  PubMed  Google Scholar 

  70. Biondo AW, Santos AP dos, Guimarães AMS, Vieira RF da C, Vidotto O, Macieira D de B, Almosny NRP, Molento MB, Timenetsky J, Morais HA de, González FHD, Messick JB (2009) A review of the occurrence of hemoplasmas (hemotrophic mycoplasmas) in Brazil. Rev Bras Parasitol Vet 18:1–7.https://doi.org/10.4322/rbpv.01803001

  71. Cicuttin GL, De Salvo MN, La Rosa I, Dohmen FEG (2017) Neorickettsia risticii, Rickettsia sp. and Bartonella sp. in Tadarida brasiliensis bats from Buenos Aires. Argentina Comp Immunol Microbiol Infect Dis 52:1–5. https://doi.org/10.1016/j.cimid.2017.04.004

    Article  PubMed  Google Scholar 

  72. Cohen C, Shemesh M, Garrido M, Messika I, Einav M, Khokhlova I, Tasker S, Hawlena H (2018) Haemoplasmas in wild rodents: routes of transmission and infection dynamics. Mol Ecol 27:3714–3726. https://doi.org/10.1111/mec.14826

    Article  PubMed  Google Scholar 

  73. Rikihisa Y, Stephen Dumler J, Dasch GA (2015) Neorickettsia. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria, 1st edn. Wiley, pp 1–12

    Google Scholar 

  74. Willi B, Boretti FS, Baumgartner C, Tasker S, Wenger B, Cattori V, Meli ML, Reusch CE, Lutz H, Hofmann-Lehmann R (2006) Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J Clin Microbiol 44:961–969. https://doi.org/10.1128/JCM.44.3.961-969.2006

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sykes JE, Drazenovich NL, Ball LM, Leutenegger CM (2007) Use of conventional and real-time polymerase chain reaction to determine the epidemiology of hemoplasma infections in anemic and nonanemic cats. J Vet Intern Med 21:685–693. https://doi.org/10.1111/j.1939-1676.2007.tb03009.x

    Article  PubMed  Google Scholar 

  76. Breitschwerdt EB, Maggi RG, Chomel BB, Lappin MR (2010) Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings. J Vet Emerg Crit Care (San Antonio) 20:8–30. https://doi.org/10.1111/j.1476-4431.2009.00496.x

    Article  PubMed  Google Scholar 

  77. Stephen Dumler J, Rikihisa Y, Dasch GA (2015) Ehrlichia. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria, 1st edn. Wiley, pp 1–11

    Google Scholar 

  78. Welch DF (2015) Bartonella. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria, 1st edn. Wiley, pp 1–15

    Google Scholar 

  79. Saito T, Walker D (2016) Ehrlichioses: an important one health opportunity. Vet Sci 3:20. https://doi.org/10.3390/vetsci3030020

    Article  PubMed  PubMed Central  Google Scholar 

  80. Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K (2012) Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol 12:1717–1723. https://doi.org/10.1016/j.meegid.2012.06.009

    Article  PubMed  Google Scholar 

  81. Olival KJ, Dittmar K, Bai Y, Rostal MK, Lei BR, Daszak P, Kosoy M (2015) Bartonella spp. in a Puerto Rican bat community. J Wildl Dis 51:274–278. https://doi.org/10.7589/2014-04-113

    Article  PubMed  Google Scholar 

  82. Davoust B, Marié J-L, Dahmani M, Berenger J-M, Bompar J-M, Blanchet D, Cheuret M, Raoult D, Mediannikov O (2016) Evidence of Bartonella spp. in blood and ticks ( Ornithodoros hasei ) of bats, in French Guiana. Vector Borne Zoonotic Dis 16:516–519. https://doi.org/10.1089/vbz.2015.1918

    Article  PubMed  Google Scholar 

  83. Sándor AD, Földvári M, Krawczyk AI, Sprong H, Corduneanu A, Barti L, Görföl T, Estók P, Kováts D, Szekeres S, László Z, Hornok S, Földvári G (2018) Eco-epidemiology of novel Bartonella genotypes from parasitic flies of insectivorous bats. Microb Ecol 76:1076–1088. https://doi.org/10.1007/s00248-018-1195-z

    Article  CAS  PubMed  Google Scholar 

  84. Lourenço EC, Almeida JC, Famadas KM (2016) Richness of ectoparasitic flies (Diptera: Streblidae) of bats (Chiroptera)—a systematic review and meta-analysis of studies in Brazil. Parasitol Res 115:4379–4388. https://doi.org/10.1007/s00436-016-5223-y

    Article  PubMed  Google Scholar 

  85. Lourenço EC, Gomes LAC, Viana AO, Famadas KM (2020) Co-occurrence of ectoparasites (Insecta and Arachnida) on bats (Chiroptera) in an Atlantic Forest remnant, Southeastern Brazil. Acta Parasit 65:750–759. https://doi.org/10.2478/s11686-020-00224-z

    Article  Google Scholar 

  86. Aguirre LF, Lens L, Matthysen E (2003) Patterns of roost use by bats in a neotropical savanna: implications for conservation. Biol Conserv 111:435–443. https://doi.org/10.1016/S0006-3207(02)00313-0

    Article  Google Scholar 

  87. Ludmilla M, de Aguiar S (2005) First record on the use of leaves of Solanum lycocarpum (Solanaceae) and fruits of Emmotum nitens (Icacinacea) by Platyrrhinus lineatus (E. Geoffroy) (Chiroptera, Phyllostomidae) in the Brazilian Cerrado. Rev Bras Zool 22:509–510. https://doi.org/10.1590/S0101-81752005000200030

    Article  Google Scholar 

  88. Muñoz-Romo M, Herrera EA, Kunz TH (2008) Roosting behavior and group stability of the big fruit-eating bat Artibeus lituratus (Chiroptera: Phyllostomidae). Mamm Biol 73:214–221. https://doi.org/10.1016/j.mambio.2007.05.013

    Article  Google Scholar 

  89. Silvestre SM, da Rocha PA, da Cunha MA, Santana JP, Ferrari SF (2016) Diet and seed dispersal potential of the white-lined bat, Platyrrhinus lineatus (E. Geoffroy, 1810), at a site in northeastern Brazil. Stud Neotrop Fauna Environ 51:37–44. https://doi.org/10.1080/01650521.2016.1151244

    Article  Google Scholar 

  90. Patterson BD, Dick CW, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Trop Ecol 23:177–189. https://doi.org/10.1017/S0266467406003816

    Article  Google Scholar 

  91. Haelewaters D, Hiller T, Dick CW (2018) Bats, bat flies, and fungi: a case of hyperparasitism. Trends Parasitol 34:784–799. https://doi.org/10.1016/j.pt.2018.06.006

    Article  PubMed  Google Scholar 

  92. Anderson TK, Sukhdeo MVK (2011) Host centrality in food web networks determines parasite diversity. PLoS One 6:e26798. https://doi.org/10.1371/journal.pone.0026798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bergallo HG, Esberard CEL, Mello MAR, Lins V, Mangolin R, Melo GGS, Baptista M (2003) Bat species richness in Atlantic Forest: what is the minimum sampling effort? Biotropica 35:278–288. https://doi.org/10.1111/j.1744-7429.2003.tb00286.x

    Article  Google Scholar 

  94. Esbérard CEL, Bergallo HG (2008) Influência do esforço amostral na riqueza de espécies de morcegos no sudeste do Brasil. Rev Bras Zool 25:67–73. https://doi.org/10.1590/s0101-81752008000100010

    Article  Google Scholar 

  95. Breviglieri CPB, Uieda W (2014) Tree cavities used as diurnal roosts by Neotropical bats. Folia Zool Brno 63:206–215. https://doi.org/10.25225/fozo.v63.i3.a8.2014

  96. Voss RS, Fleck DW, Strauss RE, Velazco PM, Simmons NB (2016) Roosting ecology of Amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. Am Mus Novit 3870:1–43. https://doi.org/10.1206/3870.1

    Article  Google Scholar 

Download references

Funding

This research was funded by FAPESP (The São Paulo Research Foundation—Process #2018/02753–0 and #2017/14124–4); FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul, Case 59/300.187/2016); CNPq (National Council for Scientific and Technological Development) for the Productivity Grant to MRA (CNPq Process #302420/2017–7), DMB-B (CNPq Process # 303802/2021–9), and HMH (CNPq Process #308768/2017–5); FAPERJ/CAPES—E-26/202.158/2015—Rio de Janeiro Postdoctoral Research Support Program for the stipends conceded to ECL; FAPEMIG (Foundation for Research Support of the State of Minas Gerais) for the Postdoctoral scholarship to CSS (RED-00253–16). The funders had no role in the design of the study, in the sampling, analyses, interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Rogério André.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.13 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcantara, D.M.C., Ikeda, P., Souza, C.S. et al. Multilayer Networks Assisting to Untangle Direct and Indirect Pathogen Transmission in Bats. Microb Ecol 86, 1292–1306 (2023). https://doi.org/10.1007/s00248-022-02108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02108-3

Keywords

Navigation