Log in

Herbivory and Soil Water Availability Induce Changes in Arbuscular Mycorrhizal Fungal Abundance and Composition

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We tested the prediction that abundance and composition of arbuscular mycorrhizal fungi (AMF) in Ipomopsis aggregata roots and soils are influenced by ungulate herbivory and drought conditions by examining the effects in a field setting over two years. We used a multi-metric approach to quantify AMF root colonization, AMF reproduction, and AMF community composition in roots and soils. We incorporated complimentary community characterization assays by morphologically identifying spores from trap cultures and the use of terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Herbivory caused a twofold increase in spore production, an increase in AMF taxa diversity in roots, and a shift in AMF species composition in rhizosphere soils. The impact of herbivory was dependent on water availability, which differed in the two contrasting years. This study demonstrates that both soil water availability and herbivory shape arbuscular mycorrhizal fungi communities. The changes to mycorrhizal communities may help in understanding mycorrhizal function in changing climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367(6480):eaba1223. https://doi.org/10.1126/science.aba1223

    Article  CAS  PubMed  Google Scholar 

  2. Riling MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Let 7:740–754. https://doi.org/10.1111/j.1461-0248.2004.00620.x

    Article  Google Scholar 

  3. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. https://doi.org/10.1016/j.tree.2014.10.006

    Article  PubMed  Google Scholar 

  4. Martínez-García LB, De Deyn GB, Pugnaire FI, Kothamasi D, van der Heijden MGA (2017) Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biol 23:5228–5236. https://doi.org/10.1111/gcb.13785

    Article  Google Scholar 

  5. Mohan JE, Cowden CC, Baas P et al (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19. https://doi.org/10.1016/j.funeco.2014.01.005

    Article  Google Scholar 

  6. Smith SE, Read DJ (2008) Mycorrhizal symbiosis 3. New York: Academic Press

    Google Scholar 

  7. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585. https://doi.org/10.1046/j.1469-8137.1997.00729.x

    Article  Google Scholar 

  8. Hoeksema JD, Chaudhary VB, Gehring CA et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x

    Article  PubMed  Google Scholar 

  9. Eom AH, Wilson GWT, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233–242. https://doi.org/10.2307/3761643

    Article  Google Scholar 

  10. Millar NS, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–641. https://doi.org/10.1007/s00442-016-3673-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deepika S, Kothamasi D (2015) Soil moisture—a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25:67–75. https://doi.org/10.1007/s00572-014-0596-1

    Article  CAS  PubMed  Google Scholar 

  12. Hazard C, Gosling P, van der Gast CJ et al (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME 7:498–508. https://doi.org/10.1038/ismej.2012.127

    Article  CAS  Google Scholar 

  13. Gehring CA, Whitham TG (1994) Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends Ecol Evol 9:251–255. https://doi.org/10.1016/0169-5347(94)90290-9

    Article  CAS  PubMed  Google Scholar 

  14. Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl Soil Ecol 26:133–141. https://doi.org/10.1016/j.apsoil.2003.11.001

    Article  Google Scholar 

  15. Saravesi K, Ruotsalainen AL, Cahill JF (2014) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24:239–245. https://doi.org/10.1007/s00572-013-0536-5

    Article  CAS  PubMed  Google Scholar 

  16. Saikkonen K, Ahonen-Jonnarth U, Markkola AM et al (1999) Defoliation and mycorrhizal symbiosis: a functional balance between carbon sources and below-ground sinks. Ecol Lett 2:19–26. https://doi.org/10.1046/j.1461-0248.1999.21042.x

    Article  Google Scholar 

  17. Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753. https://doi.org/10.1111/j.1365-2745.2010.01658.x

    Article  Google Scholar 

  18. Yang W, Zheng Y, Gao C et al (2013) The arbuscular mycorrhizal fungal community responses to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS ONE 8:e76447. https://doi.org/10.1371/journal.pone.0076447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murray TR, Frank DA, Gehring CA (2010) Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Ecology 91:815–827. https://doi.org/10.1890/09-0209.1

    Article  PubMed  Google Scholar 

  20. Ba L, Ning J, Wang D et al (2012) The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant Soil 352:143–156. https://doi.org/10.1007/s11104-011-0985-6

    Article  CAS  Google Scholar 

  21. van der Heyde M, Bennett JA, Pither J, Hart M (2017) Longterm effects of grazing on arbuscular mycorrhizal fungi. Agric Ecosyst Environ 243:27–33. https://doi.org/10.1016/j.agee.2017.04.003

    Article  Google Scholar 

  22. Gehring CA, Whitham TG (2003) Mycorrhizae-herbivore interactions: population and community consequences. In Mycorrhizal Ecology. Berlin Heidelberg: Springer-Verlag

    Google Scholar 

  23. Cotton TE (2018) Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiol Ecol 94:1–14. https://doi.org/10.1093/femsec/fiy179

    Article  CAS  Google Scholar 

  24. Bennett AE, Classen AT (2020) Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology 101:e02978. https://doi.org/10.1002/ecy.2978

    Article  PubMed  Google Scholar 

  25. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84(4):373–381. https://doi.org/10.4141/S04-002

    Article  Google Scholar 

  26. Weber SE, Diez JM, Andrews LV et al (2019) Responses of arbuscular mycorrhizal fungi to coinciding global change multiple drivers. Fungal Ecol 40:62–71. https://doi.org/10.1016/j.funeco.2018.11.008

    Article  Google Scholar 

  27. Gao C, Kim Y-C, Zheng Y et al (2016) Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany 94:459–460. https://doi.org/10.1139/cjb-2015-0210

    Article  Google Scholar 

  28. Chen YL, Xu ZW, Xu TL et al (2017) Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 115:233–242. https://doi.org/10.1016/j.soilbio.2017.08.024

    Article  CAS  Google Scholar 

  29. Stevens BM, Propster JR, Öpik M et al (2020) Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza 30:79–95. https://doi.org/10.1007/s00572-020-00931-5

    Article  PubMed  Google Scholar 

  30. Wagg C, Jansa J, Stadle M et al (2011) Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92:1303–1313. https://doi.org/10.1890/10-1915.1

    Article  PubMed  Google Scholar 

  31. Powell JR, Parrent JL, Hart MM et al (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Royal Soc B 276:4237–4245. https://doi.org/10.1098/rspb.2009.1015

    Article  Google Scholar 

  32. Kiers TE, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. https://doi.org/10.1126/science.1208473

    Article  CAS  PubMed  Google Scholar 

  33. Sendek A, Karakoc C, Wagg C et al (2019) Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 9:9650. https://doi.org/10.1038/s41598-019-45702-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furze JR, Martin AR, Nasielski J et al (2017) Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecol Evol 7:3443–3454. https://doi.org/10.1002/ece3.2900

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deveautour C, Donn S, Power SA et al (2018) Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol Ecol 27:2152–2163. https://doi.org/10.1111/mec.14536

    Article  PubMed  Google Scholar 

  36. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18(9):484–491. https://doi.org/10.1016/j.tplants.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  37. Frank DA, Gehring CA, Machut L, Phillips M (2003) Soil community composition and the regulation of grazed temperate grassland. Oecologia 137:603–609. https://doi.org/10.1007/s00442-003-1385-2

    Article  PubMed  Google Scholar 

  38. Hart MM, Reader RJ (2002) Host plant benefit from the association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366. https://doi.org/10.1007/s00374-002-0539-4

    Article  Google Scholar 

  39. Maherali H, Klironmos JN (2007) Influence of phylogeny of fungal community assembly and ecosystem functioning. Science 316:1746–1748. https://doi.org/10.1126/science.1143082

    Article  CAS  PubMed  Google Scholar 

  40. Veresoglou SD, Caruso T, Riling MC (2013) Modeling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368:507–518. https://doi.org/10.1007/s11104-012-1531-x

    Article  CAS  Google Scholar 

  41. Lerat S, Lapointe L, Gutjahr S et al (2003) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595. https://doi.org/10.1046/j.1469-8137.2003.00691.x

    Article  PubMed  Google Scholar 

  42. Antunes PM, Koch AM, Morton JB et al (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514. https://doi.org/10.1111/j.1469-8137.2010.03480.x

    Article  PubMed  Google Scholar 

  43. Allsup C, Paige K (2016) Belowground fungal associations and water interact to influence the compensatory response of Ipomopsis aggregata. Oecologia 180:463–474. https://doi.org/10.1007/s00442-015-3470-8

    Article  PubMed  Google Scholar 

  44. NOAA National Oceanic and Atmospheric National Weather Service station at Pulliam Airport Flagstaff, Az

  45. PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created June 2021

  46. USDA Plant Database

  47. McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  CAS  PubMed  Google Scholar 

  48. INVAM International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. https://invam.wvu.edu

  49. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. https://doi.org/10.1111/j.1574-6941.2008.00531.x

    Article  CAS  PubMed  Google Scholar 

  50. Lankau RA, Nordurft RN (2013) An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Mol Ecol 22:5472–5485. https://doi.org/10.1111/mec.12484

    Article  PubMed  Google Scholar 

  51. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and Applications (315–325) New York: Academic Press Inc

  52. McKenney MC, Lindsey DL (1987) Improved method for quantifying endomycorrhizal fungi spores from soil. Mycologia 79(5):779–782. https://doi.org/10.2307/3807830

    Article  Google Scholar 

  53. R 3.0.1 Core Development Team (2013) R: A language and environment for statistical computing. Vienna: R. Foundation for Statistical Computing

  54. Nishida T, Izumi N, Katayama N, Ohgushi T (2009) Short-term response of arbuscular mycorrhizal associations to spider mite herbivory. Popul Ecol 51:329–334. https://doi.org/10.1007/s10144-008-0116-2

    Article  Google Scholar 

  55. Bever J (2002) Negative feedbacks within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc Royal Soc B 269:2595–2601. https://doi.org/10.1098/rspb.2002.2162

    Article  Google Scholar 

Download references

Acknowledgements

We thank Carol Augspurger, Andrew Miller, Victoria Borowicz, Emily Wheeler Lankau, and Sara Paver for their comments on the manuscript. We thank Kelly Allsup, Karlton Allsup and Denise Paige for their help in the field.

Funding

Funding for this project was provided for Cassandra Allsup by summer research fellowship through the Program for Ecology, Evolution, and Conservation Biology at the University of Illinois and NSF Grants 0092554 and 1146085 to Ken Paige.

Author information

Authors and Affiliations

Authors

Contributions

CMA, RAL, KNP conceived and designed experiment. CMA and KNP conducted the fieldwork. CMA and RAL collected and analyzed the data. CMA, RAL, and KNP wrote the manuscript.

Corresponding author

Correspondence to Cassandra M. Allsup.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allsup, C.M., Lankau, R.A. & Paige, K.N. Herbivory and Soil Water Availability Induce Changes in Arbuscular Mycorrhizal Fungal Abundance and Composition. Microb Ecol 84, 141–152 (2022). https://doi.org/10.1007/s00248-021-01835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01835-3

Keywords

Navigation