Log in

Lipopeptides Produced by a Soil Bacillus Megaterium Strain

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A soil microorganism identified as Bacillum megaterium was found to produce several antibiotics substances after growth for 20 h at 37°C in a mineral culture medium. Analysis both by electron spray ionization (ESI) and matrix-assisted laser desorption ionization—time of flight (MALDI-TOF) mass spectrometry (MS) identified these substances as lipopeptides. Predominant peaks at m/z 1,041 and m/z 1,065 revealed ions which are compatible with surfactins and lichenysins, respectively. Two other ions m/z 1,057 and m/z 1,464 were further studied by collision-induced dissociation (CID) unveiling an iturin A at the first and fengycins A and B at the second m/z peaks. The CID spectrum of the m/z 1,464 ion also suggests the existence of fengycins A and B variants in which Ile was changed to Val in the position 10 of the peptide moiety. Raw mixtures of all these compounds were also assayed for antibiotic features. The data enlighten the unusual diversity of the lipopeptide mixture produced by a sole Bacillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Stein T (2005) Bacillus subtilis antibiotics: structures, synthesis and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  2. González-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    Article  PubMed  CAS  Google Scholar 

  3. Kakinuma A, Sugino H, Isono M, Tamura G, Arima K (1969) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976

    CAS  Google Scholar 

  4. Isogai A, Takayama S, Murakoshi S, Suzuki A (1982) Structures of α-amino acids in antibiotic iturin A. Tetrahedron Lett 23:3065–3068

    Article  CAS  Google Scholar 

  5. Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978) Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996

    Article  PubMed  CAS  Google Scholar 

  6. Jenny K, Käppeli O, Fiechter A (1991) Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol 36:5–13

    Article  PubMed  CAS  Google Scholar 

  7. Yakimov MM, Abraham W-R, Meyer H, Giuliano L, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280

    PubMed  CAS  Google Scholar 

  8. Grangemard I, Bonmartin J-M, Bernillon J, Das BC, Peypoux F (1999) Lichenysins G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. J Antibiotics 52:363–373

    CAS  Google Scholar 

  9. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin, a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J Antibiot 39:888–901

    PubMed  CAS  Google Scholar 

  10. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54:859–866

    CAS  Google Scholar 

  11. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. J Antibiot 43:267–280

    PubMed  CAS  Google Scholar 

  12. Hasumi K, Takizawa K, Takahashi F, Park JJ, Endo A (1995) Inhibition of acyl-CoA: cholesterol acytransferase by isohalobacillin, a complex o novel cyclic acypeptides produced by Bacillus sp. A1238. J Antibiot 48:1419–1425

    PubMed  CAS  Google Scholar 

  13. Besson F, Peypoux F, Quentin MJ, Michel G (1984) Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisae. J Antibiot 37:172–177

    PubMed  CAS  Google Scholar 

  14. Latoud C, Peypoux F, Michel G (1987) Action of iturin A, an antifungal antibiotic from Bacillus subtilis on the yeast Saccharomyces cerevisae. Modifications of membrane permeability and lipid composition. J Antibiot 40:1588–1595

    PubMed  CAS  Google Scholar 

  15. Mikkola R, Kolari M, Andersson MA, Helin J, Salkinoja-Salonen MS (2000) Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. Eur J Biochem 267:4068–4074

    Article  PubMed  CAS  Google Scholar 

  16. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    PubMed  CAS  Google Scholar 

  17. Hancock REW (1997) The bacterial outer membrane as drug barrier. Trends Microbiol 5:37–42

    Article  PubMed  CAS  Google Scholar 

  18. Poole K (2000) Efflux mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob Agents Chemother 44:2233–2241

    Article  PubMed  CAS  Google Scholar 

  19. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotech 3:255–264

    CAS  Google Scholar 

  20. Hagelin G, Oulie I, Raknes A, Udheim K, Clausen OG (2004) Preparative high-performance liquid chromatographic separation and analysis of the Maltacin complex—a family of cyclic peptide antibiotics from Bacillus subtilis. J Chromatogr B 811:243–251

    CAS  Google Scholar 

  21. Hagelin G (2005a) Structure investigation of maltacine B1a, B1b, B2a and B2b: cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40:527–538

    Article  PubMed  CAS  Google Scholar 

  22. Hagelin G (2005b) Structure investigation of maltacine C1a, C1b, C2a and C2b—cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40:1276–1286

    Article  PubMed  CAS  Google Scholar 

  23. Hagelin G (2005c) Structure investigation of maltacine D1a, D1b and D1c—cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40:1287–1299

    Article  PubMed  CAS  Google Scholar 

  24. Thimon L, Peypoux F, Maget-Dana R, Roux B, Michel G (1992) Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnol Appl Biochem 16:144–151

    PubMed  CAS  Google Scholar 

  25. Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  PubMed  CAS  Google Scholar 

  26. Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  27. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  PubMed  CAS  Google Scholar 

  28. Lichtemberg D, Robson RJ, Dennis EA (1983) Solubilization of phospholipid detergents. Structural and kinetic aspects. Biochim Biophys Acta 737:285–304

    Google Scholar 

  29. Smith R, Tanford C (1972) The critical micelle concentration of L-α-palmitoylphosphatidylcholine in water and in water/methanol. J Mol Biol 67:75–83

    Article  PubMed  CAS  Google Scholar 

  30. Williams BH, Hathout Y, Fenselau C (2002) Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J Mass Spectrom 37:259–264

    Article  PubMed  CAS  Google Scholar 

  31. Bode HB, Bethe B, Höfs R, Zeek A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627

    PubMed  CAS  Google Scholar 

  32. Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W (2005) What can a chemist learn from nature’s macrocycles? A brief conceptual view. Mol Divers 3:171–186

    Article  CAS  Google Scholar 

  33. Biemann K (1990) Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887

    Article  PubMed  CAS  Google Scholar 

  34. Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorbtion/ionization mass spectrometry. Anal Chem 75:1628–1637

    Article  PubMed  CAS  Google Scholar 

  35. Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and mass-assisted laser desorbtion/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid ty** of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39:98–102

    Article  PubMed  CAS  Google Scholar 

  37. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91–93:551–561

    Article  PubMed  Google Scholar 

  38. Frank G, Torsten HS, Barvel K, Peter F, Joachim V (1999) Rapid ty** of Bacillus subtilis strains by the secondary metabolites using matrix—assisted laser desorbtion/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13:943–949

    Article  Google Scholar 

  39. Opsteen JA, Cornelissen J, van Hest JCM (2004) Block copolymer vesicles. Pure Appl Chem 76:1309–1319

    Article  CAS  Google Scholar 

  40. Rodriguez-Hernandez J, Babin J, Zappone B, Lecommandoux S (2005) Preparation of shell cross-linked nano-objects from hybrid peptide block copolymers. Biomacromolecules 6:2213–2220

    Article  PubMed  CAS  Google Scholar 

  41. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  PubMed  CAS  Google Scholar 

  42. Vary PS (1994) Prime time for Bacillus megaterium. Microbiology 140:1001–1013

    Article  PubMed  CAS  Google Scholar 

  43. Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer W-D, Jahn D (2007) Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fernanda Manso Prado, Izaura Nobuko Toma, and Sirlei Mendes de Oliveira for technical assistance. Financial support was from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant No 98/11480-1) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant No 473145/2006-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Troyano Pueyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pueyo, M.T., Bloch, C., Carmona-Ribeiro, A.M. et al. Lipopeptides Produced by a Soil Bacillus Megaterium Strain. Microb Ecol 57, 367–378 (2009). https://doi.org/10.1007/s00248-008-9464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9464-x

Keywords

Navigation