Log in

Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients

  • Minisymposium: Quality and safety
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Gadolinium has been used as a base for contrast agents in MRI for the last three decades. Numerous studies over the last 4 years have reported increased signal intensity in deep brain nuclei in non-contrast MRI images following gadolinium-based contrast agent (GBCA) administration. Pathology studies performed on adults and children, and rodent necropsy studies have also shown gadolinium deposition in brain and other tissues after GBCA administration. The purpose of this review was to summarize and discuss the knowledge gained from these reports and the relevance for imaging pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Idée JM, Port M, Medina C et al (2008) Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248:77–88

    Article  CAS  PubMed  Google Scholar 

  2. Huckle JE, Altun E, Jay M, Semelka RC (2016) Gadolinium deposition in humans: when did we learn that gadolinium was deposited in vivo? Investig Radiol 51:236–240

    Article  CAS  Google Scholar 

  3. Blumfield E, Moore MM, Drake MK et al (2017) Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a quality and safety committee report. Pediatr Radiol 47:665–673

    Article  PubMed  Google Scholar 

  4. Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248

    Article  PubMed  PubMed Central  Google Scholar 

  5. Idée JM, Port M, Robic C et al (2009) Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 30:1249–1258

    Article  PubMed  Google Scholar 

  6. Ramalho J, Semelka RC, Ramalho M et al (2016) Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 37:1192–1198

    Article  CAS  PubMed  Google Scholar 

  7. Grobner T, Prischl FC (2008) Patient characteristics and risk factors for nephrogenic systemic fibrosis following gadolinium exposure. Semin Dial 21:135–139

    Article  PubMed  Google Scholar 

  8. Marckmann P (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362

    Article  PubMed  Google Scholar 

  9. Davenport MS, Asch D, Cavallo J et al (2017) ACR manual on contrast media version 10.3. American College of Radiology Committee on Drugs and Contrast Media. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed 04 Oct 2018

  10. Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    Article  PubMed  Google Scholar 

  11. White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd (DTPA-BMA) (Omniscan) versus retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig Radiol 41:272–278

    Article  Google Scholar 

  12. Tweedle MF (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Investig Radiol 27:S2–S6

    Article  Google Scholar 

  13. Errante Y, Cirimele V, Mallio CA et al (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig Radiol 49:685–690

    Article  CAS  Google Scholar 

  14. Zhang Y, Cao Y, Shih GL et al (2017) Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents. Radiology 282:516–525

    Article  PubMed  Google Scholar 

  15. Weberling LD, Kieslich PJ, Kickingereder P et al (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Investig Radiol 50:743–748

    Article  CAS  Google Scholar 

  16. Ramalho J, Castillo M, AlObaidy M et al (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276:836–844

    Article  PubMed  Google Scholar 

  17. Conte G, Preda L, Cocorocchio E et al (2017) Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol 27:4372–4378

    Article  PubMed  Google Scholar 

  18. Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809

    Article  PubMed  Google Scholar 

  19. Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791

    Article  PubMed  Google Scholar 

  20. Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 206:414–419

    Article  PubMed  Google Scholar 

  21. Bae S, Lee HJ, Han K et al (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol 27:3353–3361

    Article  PubMed  Google Scholar 

  22. Radbruch A, Weberling LD, Kieslich PJ et al (2015) High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Investig Radiol 50:805–810

    Article  CAS  Google Scholar 

  23. Langner S, Kromrey ML, Kuehn JP et al (2017) Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images — a voxel-based whole brain analysis. Eur Radiol 27:3687–3693

    Article  PubMed  Google Scholar 

  24. Kromrey ML, Liedtke KR, Ittermann T et al (2017) Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur Radiol 27:772–778

    Article  PubMed  Google Scholar 

  25. Lee JY, Park JE, Kim HS et al (2017) Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: multifactorial analysis in 385 patients. PLoS One 12:1–15

    Google Scholar 

  26. Bjørnerud A, Vatnehol SAS, Larsson C et al (2017) Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology 285:170391

    Article  Google Scholar 

  27. Forslin Y, Shams S, Hashim F et al (2017) Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. AJNR Am J Neuroradiol 38:1311–1316

    Article  CAS  PubMed  Google Scholar 

  28. Stojanov DA, Aracki-Trenkic A, Vo**ovic S et al (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26:807–815

    Article  PubMed  Google Scholar 

  29. Splendiani A, Perri M, Marsecano C et al (2018) Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 123:125–134

    Article  PubMed  Google Scholar 

  30. Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Investig Radiol 39:138–142

    Article  Google Scholar 

  31. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ et al (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1:479–488

    Article  CAS  PubMed  Google Scholar 

  32. **a D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 51:1126–1136

    Article  PubMed  Google Scholar 

  33. Christensen KN, Lee CU, Hanley MM et al (2011) Quantification of gadolinium in fresh skin and serum samples from patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 64:91–96

    Article  CAS  PubMed  Google Scholar 

  34. McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

    Article  PubMed  Google Scholar 

  35. Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232

    Article  PubMed  Google Scholar 

  36. McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:161595

    Google Scholar 

  37. Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51:447–453

    Article  CAS  Google Scholar 

  38. McDonald JS, McDonald RJ, Jentoft ME et al (2017) Intracranial gadolinium deposition following gadodiamide-enhanced magnetic resonance imaging in pediatric patients: a case-control study. JAMA Pediatr 171:705–707

    Article  PubMed  PubMed Central  Google Scholar 

  39. Balassy C, Roberts D, Miller SF (2015) Safety and efficacy of gadoteric acid in pediatric magnetic resonance imaging: overview of clinical trials and post-marketing studies. Pediatr Radiol 45:1831–1841

    Article  PubMed  Google Scholar 

  40. Ball WS, Nadel SN, Zimmerman RA et al (1993) Phase III multicenter clinical investigation to determine the safety and efficacy of godoteridol in children suspected of having neurologic disease. Radiology 186:769–774

    Article  PubMed  Google Scholar 

  41. Elster AD (1990) Cranial MR imaging with Gd-DTPA in neonates and young infants: preliminary experience. Radiology 176:225–230

    Article  CAS  PubMed  Google Scholar 

  42. Hahn G, Sorge I, Hirsch W et al (2009) Pharmacokinetics and safety of gadobutrol-enhanced magnetic resonance imaging in pediatric patients. Investig Radiol 44:776–783

    Article  CAS  Google Scholar 

  43. Lundby B, Gordon P, Hugo F (1996) MRI in children given gadodiamide injection: safety and efficacy in CNS and body indications. Eur J Radiol 23:190–196

    Article  CAS  PubMed  Google Scholar 

  44. Schneider G, Schürholz H (2013) Safety and adverse effects during 24 hours after contrast-enhanced MRI with gadobenate dimeglumine (MultiHance) in children. Pediatri Radiol 43:202–211

    Article  Google Scholar 

  45. Gale EM, Caravan P, Rao AG et al (2017) Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol 47:507–521

    Article  PubMed  Google Scholar 

  46. Roberts DR, Chatterjee AR, Yazdani M et al (2016) Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol 37:2340–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mendichovszky IA, Marks SD, Simcock CM, Olsen ØE (2008) Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol 38:489–496

    Article  PubMed  Google Scholar 

  48. Miller JH, Hu HH, Pokorney A et al (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136:e1637–e1640

    Article  PubMed  Google Scholar 

  49. Roberts DR, Holden KR (2016) Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 38:331–336

    Article  PubMed  Google Scholar 

  50. Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598

    Article  PubMed  Google Scholar 

  51. Kasper E, Schemuth HP, Horry S, Kinner S (2018) Changes in signal intensity in the dentate nucleus at unenhanced T1-weighted magnetic resonance imaging depending on class of previously used gadolinium-based contrast agent. Pediatr Radiol 48:686–693

    Article  PubMed  Google Scholar 

  52. Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228

    Article  PubMed  Google Scholar 

  53. Schneider GK, Stroeder J, Roditi G et al (2017) T1 signal measurements in pediatric brain: findings after multiple exposures to gadobenate dimeglumine for imaging of nonneurologic disease. AJNR Am J Neuroradiol 38:1799–1806

    Article  CAS  PubMed  Google Scholar 

  54. Radbruch A, Haase R, Kickingereder P et al (2017) Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology 283:828–836

    Article  PubMed  Google Scholar 

  55. Tibussek D, Rademacher C, Caspers J et al (2017) Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology 285:223–230

    Article  PubMed  Google Scholar 

  56. Rossi Espagnet MC, Bernardi B, Pasquini L et al (2017) Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 47:1345–1352

    Article  PubMed  Google Scholar 

  57. Radbruch A, Quattrocchi CC (2017) Interpreting signal-intensity ratios without visible T1 hyperintensities in clinical gadolinium retention studies. Pediatr Radiol 47:1688–1689

    Article  PubMed  Google Scholar 

  58. Rossi-Espagnet MC, Tomà P, Napolitano A (2017) Reply to Radbruch et al.: ‘interpreting signal-intensity ratios without visible T1 hyperintensities in clinical gadolinium retention studies.’ Pediatr Radiol 47:1690–1691

    Article  PubMed  Google Scholar 

  59. Tamrazi B, Nguyen B, C-SJ L et al (2017) Changes in signal intensity of the dentate nucleus and globus pallidus in pediatric patients: impact of brain irradiation and presence of primary brain tumors independent of linear gadolinium-based contrast agent administration. Radiology 287:171850

    Google Scholar 

  60. Mithal LB, Patel PS, Mithal D et al (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664

    Article  PubMed  Google Scholar 

  61. Maximova N, Gregori M, Zennaro F et al (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426

    Article  PubMed  Google Scholar 

  62. Roberts DR, Welsh CA, LeBel II DP, Davis WC (2017) Distribution map of gadolinium deposition within the cerebellum following GBCA administration. Neurology 88:1206–1208

  63. McDonald RJ, McDonald JS, Dai D et al (2017) Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology 285:161594

    Google Scholar 

  64. Gianolio E, Bardini P, Arena F et al (2017) Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents. Radiology 285:839–849

    Article  PubMed  Google Scholar 

  65. Frenzel T, Apte C, Jost G et al (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Investig Radiol 52:396–404

    Article  CAS  Google Scholar 

  66. Kartamihardja AAP, Nakajima T, Kameo S et al (2016) Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. Br J Radiol 89:20160509

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648

    Article  CAS  PubMed  Google Scholar 

  68. Bussi S, Coppo A, Botteron C et al (2018) Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 47:746–752

    Article  PubMed  Google Scholar 

  69. Ramalho M, Ramalho J, Burke LM, Semelka RC (2017) Gadolinium retention and toxicity — an update. Adv Chronic Kidney Dis 24:138–146

    Article  PubMed  Google Scholar 

  70. Murata N, Murata K, Gonzalez-Cuyar LF, Maravilla KR (2016) Gadolinium tissue deposition in brain and bone. Magn Reson Imaging 34:1359–1365

    Article  CAS  PubMed  Google Scholar 

  71. Ramalho J, Ramalho M (2017) Gadolinium deposition and chronic toxicity. Magn Reson Imaging Clin N Am 25:765–778

    Article  PubMed  Google Scholar 

  72. Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. AJR Am J Roentgenol 207:229–233

    Article  PubMed  Google Scholar 

  73. RSNA Daily Bulletin (2017) No evidence gadolinium causes neurologic harm. Radiological Society of North America. https://rsna2017.rsna.org/dailybulletin/index.cfm?pg=17fri10. Accessed 04 Oct 2018

  74. Goske MJ, Applegate KE, Boylan J et al (2008) The image gently campaign: working together to change practice. AJR Am J Roentgenol 190:273–274

    Article  PubMed  Google Scholar 

  75. Scheinfeld MH, Moon JY, Fagan MJ et al (2017) MRI usage in a pediatric emergency department: an analysis of usage and usage trends over 5 years. Pediatr Radiol 47:327–332

    Article  PubMed  Google Scholar 

  76. Maloney E, Stanescu AL, Perez FA et al (2018) Surveillance magnetic resonance imaging for isolated optic pathway gliomas: is gadolinium necessary? Pediatr Radiol 48:1472–1484

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Blumfield.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumfield, E., Swenson, D.W., Iyer, R.S. et al. Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49, 448–457 (2019). https://doi.org/10.1007/s00247-018-4304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4304-8

Keywords

Navigation