Log in

Marrow: red, yellow and bad

  • Pediatric Musculoskeletal Imaging: Beyond the Basics
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Bone marrow is one of the largest and most dynamic tissues in the body, and it is well-depicted on conventional MRI sequences. However, often only perfunctory attention is paid to the bone marrow on musculoskeletal imaging studies, raising the risk of delayed or missed diagnoses. To guide appropriate recognition of normal variants and pathological processes involving the marrow compartment, this article describes and depicts the physiological spatiotemporal pattern of conversion of hematopoietic red marrow to fatty yellow marrow during childhood and adolescence, and the characteristic imaging findings of disorders involving marrow hyperplasia/reconversion, marrow infiltration/deposition and marrow depletion/failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Riley RS, Williams D, Ross M et al (2009) Bone marrow aspirate and biopsy: a pathologist’s perspective. II. Interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal 23:259–307

    Article  PubMed  Google Scholar 

  2. Foster K, Chapman S, Johnson K (2004) MRI of the marrow in the paediatric skeleton. Clin Radiol 59:651–673

    Article  PubMed  CAS  Google Scholar 

  3. Dwek JR, Shapiro F, Laor T et al (1997) Normal gadolinium-enhanced MR images of the develo** appendicular skeleton: Part 2. Epiphyseal and metaphyseal marrow. AJR Am J Roentgenol 169:191–196

    Article  PubMed  CAS  Google Scholar 

  4. Blebea JS, Houseni M, Torigian DA et al (2007) Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med 37:185–194

    Article  PubMed  Google Scholar 

  5. Ording Müller LS, Avenarius D, Olsen OE (2011) High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol 41:221–226

    Article  PubMed  Google Scholar 

  6. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    PubMed  CAS  Google Scholar 

  7. Jaramillo D, Laor T, Hoffer FA et al (1991) Epiphyseal marrow in infancy: MR imaging. Radiology 180:809–812

    PubMed  CAS  Google Scholar 

  8. Sebag GH, Dubois J, Tabet M et al (1993) Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 23:515–518

    Article  PubMed  CAS  Google Scholar 

  9. Zawin JK, Jaramillo D (1993) Conversion of bone marrow in the humerus, sternum, and clavicle: changes with age on MR images. Radiology 188:159–164

    PubMed  CAS  Google Scholar 

  10. Waitches G, Zawin JK, Poznanski AK (1994) Sequence and rate of bone marrow conversion in the femora of children as seen on MR imaging: are accepted standards accurate? AJR Am J Roentgenol 162:1399–1406

    Article  PubMed  CAS  Google Scholar 

  11. Shabshin N, Schweitzer ME, Morrison WB et al (2006) High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes? Pediatr Radiol 36:670–676

    Article  PubMed  Google Scholar 

  12. Ording Müller LS, Avenarius D, Damasio B et al (2011) The paediatric wrist revisited: redefining MR findings in healthy children. Ann Rheum Dis 70:605–610

    Article  Google Scholar 

  13. de Abreu MR, Wesselly M, Chung CB et al (2011) Bone marrow MR imaging findings in disuse osteoporosis. Skeletal Radiol 40:571–575

    Article  PubMed  Google Scholar 

  14. Wilson AJ, Murphy WA, Hardy DC et al (1988) Transient osteoporosis: transient bone marrow edema? Radiology 167:757–760

    PubMed  CAS  Google Scholar 

  15. Zanetti M, Bruder E, Romero J et al (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840

    PubMed  CAS  Google Scholar 

  16. Roemer FW, Frobell R, Hunter DJ et al (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 17:1115–1131

    Article  PubMed  CAS  Google Scholar 

  17. Mankad VN, Williams JP, Harpen MD et al (1990) Magnetic resonance imaging of bone marrow in sickle cell disease: clinical, hematologic, and pathologic correlations. Blood 75:274–283

    PubMed  CAS  Google Scholar 

  18. Levin TL, Sheth SS, Ruzal-Shapiro C et al (1995) MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation. Pediatr Radiol 25:607–613

    Article  PubMed  CAS  Google Scholar 

  19. Guillerman RP (2008) Normal and abnormal bone marrow. In: Slovis T, Coley B, Bulas D et al (eds) Caffey’s pediatric diagnostic imaging, 11th edn. Elsevier, Philadelphia, pp 2970–2996

    Chapter  Google Scholar 

  20. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed  Google Scholar 

  21. Fletcher BD, Wall JE, Hanna SL (1993) Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 189:745–751

    PubMed  CAS  Google Scholar 

  22. Stevens SK, Moore SG, Amylon MD (1990) Repopulation of marrow after transplantation: MR imaging with pathologic correlation. Radiology 175:213–218

    PubMed  CAS  Google Scholar 

  23. Fletcher BD (1997) Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 27:623–636

    Article  PubMed  CAS  Google Scholar 

  24. Browne LP, Steuber CP, Guillerman RP (2007) Diagnosis of aleukemic leukemia in children by MRI. Pediatr Radiol 37(Suppl 2):S130

    Google Scholar 

  25. Baur A, Dietrich O, Resier M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–1708

    Article  PubMed  Google Scholar 

  26. Jensen KE, Thomsen C, Henriksen O et al (1990) Changes in T1 relaxation processes in the bone marrow following treatment in children with acute lymphoblastic leukemia. A magnetic resonance imaging study. Pediatr Radiol 20:464–468

    Article  PubMed  CAS  Google Scholar 

  27. Ruzal-Shapiro C, Berdon WE, Cohen MD et al (1991) MR imaging of diffuse bone marrow replacement in pediatric patients with cancer. Radiology 181:587–589

    PubMed  CAS  Google Scholar 

  28. Disler DG, McCauley TR, Ratner LM et al (1997) In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 169:1439–1447

    Article  PubMed  CAS  Google Scholar 

  29. Daldrup-Link HE, Mohanty A, Cuenod C et al (2009) New perspectives on bone marrow contrast agents and molecular imaging. Semin Musculoskelet Radiol 13:145–156

    Article  PubMed  Google Scholar 

  30. Kumar J, Seith A, Sharma R et al (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38:953–962

    Article  PubMed  Google Scholar 

  31. Goo HW (2011) Regional and whole-body imaging in pediatric oncology. Pediatr Radiol 41(Suppl 1):S186–S194

    Article  PubMed  Google Scholar 

  32. Goo HW, Choi SH, Ghim T et al (2005) Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773

    Article  PubMed  Google Scholar 

  33. Meyer JS, Siegel MJ, Farooqui SO et al (2005) Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma? Pediatr Radiol 35:778–785

    Article  PubMed  Google Scholar 

  34. Goo HW, Yang DH, Ra YS et al (2006) Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol 36:1019–1031

    Article  PubMed  Google Scholar 

  35. Phillips M, Allen C, Gerson P et al (2009) Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 52:97–101

    Article  PubMed  Google Scholar 

  36. Razek AA, Abdalla A, Fathy A et al (2012) Apparent diffusion coefficient of the vertebral bone marrow in children with Gaucher’s disease type I and III. Skeletal Radiol [Epub ahead of print]

  37. Maas M, Hangartner T, Mariani G et al (2008) Recommendations for the assessment and monitoring of skeletal manifestations in children with Gaucher disease. Skeletal Radiol 37:185–188

    Article  PubMed  CAS  Google Scholar 

  38. Kornreich L, Horev G, Yaniv I et al (1997) Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 27:869–872

    Article  PubMed  CAS  Google Scholar 

  39. Kaplan PA, Asleson RJ, Klassen LW et al (1987) Bone marrow patterns in aplastic anemia: observations with 1.5-T MR imaging. Radiology 164:441–444

    PubMed  CAS  Google Scholar 

  40. Takagi S, Tanaka O, Miura Y (1995) Magnetic resonance imaging of femoral marrow in patients with myelodysplastic syndromes or leukemia. Blood 86:316–322

    PubMed  CAS  Google Scholar 

  41. Al-Uzri A, Yorgin PD, Kling PJ (2003) Anemia in children after transplantation: etiology and the effect of immunosuppressive therapy on erythropoiesis. Pediatr Transplant 7:253–264

    Article  PubMed  CAS  Google Scholar 

  42. Saini A, Saifuddin A (2004) MRI of osteonecrosis. Clin Radiol 59:1079–1093

    Article  PubMed  CAS  Google Scholar 

  43. Jaramillo D (2010) Whole-body MR imaging, bone diffusion imaging: how and why? Pediatr Radiol 40:978–984

    Article  PubMed  Google Scholar 

  44. Tang YM, Jeavons S, Stuckey S et al (2007) MRI features of bone marrow necrosis. AJR Am J Roentgenol 188:509–514

    Article  PubMed  Google Scholar 

  45. Haller J, Greenway G, Resnick D et al (1989) Intraosseous fat necrosis associated with acute pancreatitis: MR imaging. Radiology 173:193–195

    PubMed  CAS  Google Scholar 

  46. Stevens SK, Moore SG, Kaplan ID (1990) Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 154:745–750

    Article  PubMed  CAS  Google Scholar 

  47. Brennan CM, Atkins KA, Druzgal CH et al (2012) Magnetic resonance imaging appearance of scurvy with gelatinous bone marrow transformation. Skeletal Radiol 41:357–360

    Article  PubMed  Google Scholar 

  48. Elster AS, Theros EG, Ley LL et al (1992) Autosomal recessive osteopetrosis: bone marrow imaging. Radiology 182:507–514

    PubMed  CAS  Google Scholar 

Download references

Disclaimer

The author has no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Paul Guillerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillerman, R.P. Marrow: red, yellow and bad. Pediatr Radiol 43 (Suppl 1), 181–192 (2013). https://doi.org/10.1007/s00247-012-2582-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2582-0

Keywords

Navigation