Log in

Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb–Zn Mine, Toranica, Republic of Macedonia

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Moss species (Homalothecium lutescens, Hypnum cupressiforme, Brachythecium glareosum, and Campthotecium lutescens) were used as suitable sampling media for biomonitoring the origin of heavy-metal pollution in the lead–zinc (Pb–Zn) mine “Toranica” near the Kriva Palanka town, Eastern Macedonia. The contents of 20 elements—silver (Ag), aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), Pb, strontium (Sr), vanadium (V), and (Zn) were determined by atomic emission spectrometry with inductively coupled plasma. Data processing was applied with combinations of multivariate statistical methods: factor analysis, principal component analysis, and cluster analysis. Moss’ responsiveness to the atmospheric distribution of the selected elements was investigated in correlation to the specific geology of the region (soil dusting). Lithogenic distribution was characterized with the distribution of three dominant geochemical associations: F1: Al–Li–V–Cr–Ni–Co, F2: Ba–Ca–Sr, and F3: Cd–Zn–Pb–Cu. Spatial distribution was constructed for visualization of the factor deposition. Furthermore, air distribution (passive biomonitoring) versus soil geochemistry of the analyzed elements was examined. Significant correlations were singled out for Pb, Zn, and Cd and for Mg(moss)/Na(soil). Characteristic lithological anomaly characterized the presence of the oldest geological volcanic rocks. Zone 1 (Pb–Zn mine surrounding) presents a unique area with hydrothermal action of Pb–Zn mineralization leading to polymetallic enrichments in soil. This phenomenon strongly affects the environment, which is a natural geochemical imprint in this unique area (described with the strong dominance of the geochemical association Cd–Zn–Pb–Cu).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aboal JR, Fernández JA, Boquete T, Carballeira A (2010) Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ 408:6291–6297

    Article  CAS  Google Scholar 

  • Acton QA (2013) Issues in environmental health and pollution. Scholatity Edition Press, Atlanta

    Google Scholar 

  • Angelovska S, Stafilov T, Šajn R, Bačeva K, Balabanova B (2014) Moss biomonitoring of air pollution with heavy metals in the vicinity of Pb–Zn mine “Toranica” near the town of Kriva Palanka. Mod Chem Appl 2(123):1–6

    CAS  Google Scholar 

  • Ares A, Aboal JR, Carballeira A, Giordano SP, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158

    Article  CAS  Google Scholar 

  • Ares A, Varela Z, Aboal JR, Carballeira A, Fernández JA (2015) Active biomonitoring with the moss Pseudoscleropodium purum: comparison between different types of transplants and bulk deposition. Ecotoxicol Environ Saf 12:74–79

    Article  Google Scholar 

  • Bačeva K, Stafilov T, Šajn R, Tănăselia C, Ilić Popov S (2011) Distribution of chemical elements in attic dust in the vicinity of ferronickel smelter plant. Fresenius Environ Bull 20(9):2306–2314

    Google Scholar 

  • Bačeva K, Stafilov T, Šajn R, Tănăselia C (2012) Moss biomonitoring of air pollution with heavy metals in the vicinity of a ferronickel smelter plant. J Environ Sci Health A 47(4):645–656

    Article  Google Scholar 

  • Bačeva K, Stafilov T, Šajn R, Tănăselia C (2013) Air dispersion of heavy metals in vicinity of the As-Sb-Tl abounded mine and responsiveness of moss as a biomonitoring media in small scale investigations. Environ Sci Pollut Res 20(12):8763–8779

    Article  Google Scholar 

  • Bačeva K, Stafilov T, Šajn R, Tănăselia C (2014) Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb-As-Tl Allchar mine, Republic of Macedonia. Environ Res 133:77–89

    Article  Google Scholar 

  • Balabanova B, Stafilov T, Bačeva K, Šajn R (2010) Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radovıš, Republic of Macedonia. J Environ Sci Health A 45:1504–1518

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2011) Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant. Arch Environ Contam Toxicol 61(2):173–184

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2012) Characterisation of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to biomonitoring of air pollution in the vicinity of copper mine. Int J Environ Res 6(3):779–794

    CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2014) Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. Int J Environ Sci Technol 11:517–528

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2015) Quantitative assessment of metal elements using moss species as biomonitors in downwind area of one lead-zinc mine. J Environ Sci. https://www.researchgate.net/publication/258338186_quantitative_assessment_of_metal_elements_using_moss_species_as_biomonitors_in_downwind_area_of_one_lead-zinc_mine

  • Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E et al (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118

    Article  CAS  Google Scholar 

  • Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Pavlov S, Enimiteva V (2012) Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. J Environ Sci Health A 47:2000–2015

    Article  CAS  Google Scholar 

  • Barandovski L, Stafilov T, Šajn R, Frontasyeva MV, Bačeva K (2013) Air pollution study in Macedonia by using moss biomonitoring technique, ICP-AES and AAS. Maced J Chem Chem Eng 32(1):89–107

    CAS  Google Scholar 

  • Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Ostrovnaya T (2015) Atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22(20):16077–16097

    Article  CAS  Google Scholar 

  • Boev B, Yanev Y (2001) Tertiary magmatism within the Republic of Macedonia: a review. Acta Vulcanol 13(1–2):57–71

    Google Scholar 

  • Boev B, Stafilov T, Bačeva K, Šorša A, Boev I (2013) The nickel smelter plant influence on the mineralogical composition of attic dust in Tikveš Valley, Republic of Macedonia. Environ Sci Pollut Res 20(6):3781–3788

    Article  CAS  Google Scholar 

  • Boquete MT, Fernández JA, Carballeira A, Aboal JR (2013) Assessing the tolerance of the terrestrial moss Pseudoscleropodium purum to high levels of the atmospheric heavy metals: a reciprocal transplants study. Sci Total Environ 461–462:552–559

    Article  Google Scholar 

  • Carballeira CB, Aboal JR, Fernández JA, Carballeira A (2008) Comparison of the accumulation of elements in two terrestrial moss species. Atmos Environ 42:4904–4917

    Article  CAS  Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2006) Assessment of intermittent trace element pollution by moss bags. Environ Pollut 144:886–892

    Article  CAS  Google Scholar 

  • Dudka S, Adriano CD (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  CAS  Google Scholar 

  • Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015) A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Total Environ 517:132–150

    Article  Google Scholar 

  • Filzmoser P, Garrett RG, Reimann C (2005) Multivariate outlier detection in exploration geochemistry. Comput Geosci 31(5):579–587

    Article  CAS  Google Scholar 

  • Harmens H, Norris D, The participants of the moss survey (2008) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, Bangor, UK. http://icpvegetation.ceh.ac.uk

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y et al (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200(2015):93–104

    Article  CAS  Google Scholar 

  • Hristozova G, Marinova S, Strelkova LP, Goryainova Z, Frontasyeva MV, Stafilov T (2014) Atmospheric deposition study in the area of Kardzhali lead-zinc plant based on moss analysis. Am J Anal Chem 5(14):920–931

    Article  CAS  Google Scholar 

  • Ilyin I, Rozovskaya O, Travnikov O, Aas W (2007) Heavy metals: transboundary pollution of the environment. EMEP Status Report 2/2007. http://www.msceast.org/reports/2_2007.pdf

  • International Organization for Standardization (2001) Soil quality: dissolution for the determination of total element content—Part 1: dissolution with hydrofluoric and perchloric acids. 14869-1. ISO. Geneva

  • Li W, Wang Y, Collet JL, Chen JJ, Zhang X, Wang Z et al (2013) Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region. Environ Sci Technol 47(9):4172–4180

    Article  CAS  Google Scholar 

  • Rakićević T, Dumurdžanov N, Petkovski M (1968) Basic Geological Map of SFRJ, sheet Štip, M 1:100,000 (map & interpreter). Federal Geological Survey, Beograd

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206

    Article  CAS  Google Scholar 

  • Serafimovski T (1993) Structural-metallogenetic features of the Lece-Chakidiki zone: types of mineral deposits and distribution. Faculty of Mining and Geology, Geological Department, Special Issue No. 2. Stip

  • Serafimovski T, Spasovski O, Stankovski R (1997) Content and distribution of some elements in the major minerals from the Toranica Pb–Zn deposit (NE Macedonia). Geol Macedonia 11:1–15

    Google Scholar 

  • Serafimovski T, Tasev G, Dolenec T (2006a) Petrological and geochemical features of the Neogene volcanites of the Osogovo mountains, eastern Macedonia. RMZ Mater Geoenviron 52(3):523–534

    Google Scholar 

  • Serafimovski T, Tasev G, Dolenec T (2006b) Actinolite-Phengite-chlorite metasomatites from the Toranica Pb–Zn ore deposit in Macedonia. RMZ Mater Geoenviron 53(4):445–453

    CAS  Google Scholar 

  • Serafimovski T, Dolenec T, Tasev G, Dolenec M, Rogan N (2007) Acid mine drainage systems and metal pollution around the active polymetallic mines in the eastern Macedonia. Geol Macedonia 21:69–73

    Google Scholar 

  • Stafilov T (2014) Environmental pollution with heavy metals in the Republic of Macedonia. Contrib Sect Nat Math Biotechnol Sci MASA 35(2):81–119

    Google Scholar 

  • Stafilov T, Šajn R, Boev B, Cvetković J, Mukaetov D, Andreevski M et al (2010a) Distribution of some elements in surface soil over the Kavadarci region, Republic of Macedonia. Environ Earth Sci 61(7):1515–1530

    Article  CAS  Google Scholar 

  • Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2010b) Heavy metal contamination of surface soils around a lead and zinc smelter in the Republic of Macedonia. J Hazard Mater 175:896–914

    Article  CAS  Google Scholar 

  • Stafilov T, Šajn R, Alijagić J (2013) Distribution of arsenic, antimony and thallium in soil in Kavadarci and its environs, Republic of Macedonia. Soil Sed Contam 22(1):105–118

    Article  CAS  Google Scholar 

  • Tyler S (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253

    Article  Google Scholar 

  • Wolterbeek HT, Bode P (1995) Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci Total Environ 176(1): 33–43

    Article  CAS  Google Scholar 

  • Žibret G, Šajn R (2010) Hunting for geochemical associations of elements: factor analysis and self-organizing maps. Math Geosci 42:681–703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trajče Stafilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelovska, S., Stafilov, T., Šajn, R. et al. Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb–Zn Mine, Toranica, Republic of Macedonia. Arch Environ Contam Toxicol 70, 487–505 (2016). https://doi.org/10.1007/s00244-015-0251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0251-7

Keywords

Navigation