Log in

Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors

  • Review
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this ‘flexibility within the structural rigidity’ is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JF (2010) Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 56(7):1120–1129

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi P, Bocedi A, Bolognesi M et al (2003) The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 4(3):231–251

    Article  CAS  PubMed  Google Scholar 

  • Azarkan M, Martinez-Rodriguez S, Buts L, Baeyens-Volant D, Garcia-Pino A (2011) The plasticity of the β-trefoil fold constitutes an evolutionary platform for protease inhibition. J Biol Chem 286(51):43726–43734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Báez A, Salceda E, Fló M et al (2015) α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat. Neurosci Lett 606:42–47

    Article  PubMed  CAS  Google Scholar 

  • Ben Khalifa N, Tyteca D, Courtoy PJ et al (2012) Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization. Neurodegener Dis 10(1–4):92–95

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo P, Colombatti A (1989) The carboxyl terminus of the chicken α3 chain of collagen VI is a unique mosaic structure with glycoprotein Ib-like, fibronectin type III, and Kunitz modules. J Bio Cem 264(34):20235–20239

    CAS  Google Scholar 

  • Broze GJ Jr, Girard TJ (2012) Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed) 17:262–280

    Article  CAS  Google Scholar 

  • Buchanan A, Revell JD (2015) Novel therapeutic proteins and peptides. In: Manmohan S, Maya S (eds) Novel approaches and strategies for biologics, vaccines and cancer therapies. Academic Press, Cambridge, ISBN 9780124166035, pp. 483–509.

  • Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128:3525–3531

    CAS  PubMed  Google Scholar 

  • Chang LS, Chung C, Huang HB, Lin SR (2001) Purification and characterization of a chymotrypsin inhibitor from the venom of Ophiophagus hannah (king cobra). Biochem Biophys Res Commun 283:862–867

    Article  CAS  PubMed  Google Scholar 

  • Chapin JC, Hajjar KA (2015) Fibrinolysis and the control of blood coagulation. Blood Rev 29(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Cescon M, Bonaldo P (2013a) Collagen VI in cancer and its biological mechanisms. Trends in Mol Med 19(7):410–417

    Article  CAS  Google Scholar 

  • Chen Z, Luo F, Feng J, Yang W et al (2013b) Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins. PLoS ONE 8(4):e60201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleynen I, Juni P, Bekkering GE, Nuesch E et al (2011) Genetic evidence supporting the association of protease and protease inhibitor genes with inflammatory bowel disease: a systematic review. PLoS ONE 6(9):e24106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen I, Coban M, Shahar A, Sankaran B et al (2019) Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotrypsin. J Biol Chem 294(13):5105–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotabarren J, Lufrano D, Graciela Parisi M et al (2020) Biotechnological, biomedical and agronomical applications of plant protease inhibitors with high stability: a systematic review. Plant Sci 292:110398

    Article  CAS  PubMed  Google Scholar 

  • De Magalhães MTQ, Mambelli FS, Santos BPO, Morais SB, Oliveira SC (2018) Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival. Microbes Infect 20(9–10):606–609

    Article  CAS  PubMed  Google Scholar 

  • De Souza JG, Morais KL, Anglés-Cano E et al (2016) Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model. Oncotarget 7(38):62255–62266

    Article  PubMed  PubMed Central  Google Scholar 

  • Deisenhofer J, Steigemann W (1975) Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at l.5 Å resolution. Acta Cryst B31:238–250

    Article  CAS  Google Scholar 

  • Ding L, Hao J, Luo X, Chen Z (2018) Engineering varied serine protease inhibitors by converting P1 site of BF9, a weakly active Kunitz-type animal toxin. Int J Biol Macromol 120(Pt A):1190–1197

    Article  CAS  PubMed  Google Scholar 

  • Fioretti E, Angeletti M, Citro G, Barra D, Ascoli F (1987) Kunitz-type inhibitors in human serum. Identification and characterization. J Biol Chem 262(8):3586–3589

    Article  CAS  PubMed  Google Scholar 

  • Flight SM, Johnson LA, Du QS, Warner RL et al (2009) Textilinin-1, an alternative anti-bleeding agent to aprotinin: importance of plasmin inhibition in controlling blood loss. Br J Hematol 145:207–211

    Article  CAS  Google Scholar 

  • Fregonese L, Stolk J (2008) Hereditary alpha-I-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Fries E, Blom AM (2000) Bikunin-not just a plasma proteinase inhibitor. Int J Biochem Cell Biol 32(2):125–137

    Article  CAS  PubMed  Google Scholar 

  • Fries E, Kaczmarczyk A (2003) Inter-α-inhibitor, hyaluronan and inflammation. Acta Biochim Polon 50(3):735–742

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA (2005) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10(1):483–511

    Article  CAS  Google Scholar 

  • Garcia-Fernandez R, Pons T, Meyer A, Perbandt M et al (2012) Structure of the recombinant BPTI/Kunitz-type inhibitor rShPI-1A from the marine invertebrate Stichodactyla helianthus. Acta Crystallogr. Sect F Struct Biol Cryst Commun 68:1289–1293

    Article  CAS  Google Scholar 

  • Garcia-Fernandez R, Peigneur S, Pons T, Alvarez C et al (2016) The Kunitz-type protein ShPI-1 inhibits serine proteases and voltage-gated potassium channels. Toxins 8:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graur D, Li WH (1988) Evolution of protein inhibitors of serine proteinases: positive Darwinian selection or compositional effects? J Mol Evol 28:131–135

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (1997) Recent studies on dendrotoxins and potassium ion channels. Gen Pharmacol Vasc Syst 28(1):7–12

    Article  CAS  Google Scholar 

  • Harvey AL (2001) Twenty years of dendrotoxins. Toxicon 39(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Robertson B (2004) Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem 11(23):3065–3072

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Hastie ND (1987) Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 326:96–99

    Article  CAS  PubMed  Google Scholar 

  • Hynes TR, Randal M, Kennedy LA, Eigenbrot C, Kossiakoff AA (1990) X-ray crystal structure of the protease inhibitor domain of Alzheimer’s amyloid β-precursor protein. Biochemistry 29(43):10018–10022

    Article  CAS  PubMed  Google Scholar 

  • Ikeo K, Takahashi K, Gojobori T (1992) Evolutionary origin of a Kunitz-type trypsin inhibitor domain inserted in the amyloid β precursor protein of Alzheimer’s disease. J Mol Evol 34:536–543

    Article  CAS  PubMed  Google Scholar 

  • Jefferies JR, Campbell AM, Van Rossum AJ, Barrett J, Brophy PM (2001) Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics 1:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Johnson SA, Rogers J, Finch CE (1989) APP-695 transcript prevalence is selectively reduced during Alzheimer’s disease in cortex and hippocampus but not in cerebellum. Neurobiol Aging 10:267–272

    Article  Google Scholar 

  • Johnson SA, Mc Neill T, Cordell B, Finch CE (1990) Relation of neuronal APP-751/APP-695 mRNA ratio and neuritic plaque density in Alzheimer’s disease. Science 248:854–857

    Article  CAS  PubMed  Google Scholar 

  • Kalita B, Dutta S, Mukherjee AK (2019) RGD-independent binding of Russell’s viper venom kunitz-type protease inhibitors to platelet GPIIb/IIIa receptor. Sci Rep 9:8316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ketterer S, Gomez-Auli A, Hillebrand LE, Petrera A et al (2016) Inherited diseases caused by mutations in cathepsin protease genes. FEBS J 284:1437–1454

    Article  CAS  Google Scholar 

  • Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitor activity. Nature 331:530–532

    Article  CAS  PubMed  Google Scholar 

  • Kitaguchi N, Takahashi Y, Oishi K, Shiojiri S et al (1990) Enzyme specificity of proteinase inhibitor region in amyloid precursor protein of Alzheimer’s disease: different properties compared with protease nexin I. Biochim Biophys Acta 1038:105–113

    Article  CAS  PubMed  Google Scholar 

  • Kordis D, Gubensek F (2000) Adaptive evolution of animal toxin multigene families. Gene 261(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Lamande SR, Morgelin M, Adams NE et al (2006) The C5 domain of the collagen VI α3(VI) chain is critical for extracellular microfibril formation and is present in the extracellular matrix of cultured cells. J Bio Chem 281(24):16607–16614

    Article  CAS  Google Scholar 

  • Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Kato I, Ardelt W, Cook J, Denton A et al (1987a) Ovomucoid third domains from 100 avian species: isolation, sequences and hypervariability of enzyme-inhibitor contact residues. Biochemistry 26:202–221

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Kato I, Kohr WJ, Park SJ, Tashiro M, Whatley HE (1987b) Positive Darwinian selection in evolution of protein inhibitors of serine proteinases. Cold Spring Harbor Symp Quant Biol 52:545–553

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A (2008) Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opin Biol Ther 8(8):1187–1199

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Yang H, Yu H et al (2008) A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides 29(3):369–374

    Article  CAS  PubMed  Google Scholar 

  • Martins LA, Kotál J, Bensaoud C et al (2020) Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim Biophys Acta Proteins Proteom 1868(2):140336

    Article  CAS  PubMed  Google Scholar 

  • Masci PP, Whitaker AN, Sparrow LG, Jersey JD, Winzor DJ et al (2000) Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul Fibrinolysis 11:385–393

    Article  CAS  PubMed  Google Scholar 

  • Molinari F, Meskanaite V, Munnich A, Sonderegger P, Colleaux L (2003) Extracellular proteases and their inhibitors in genetic diseases of the central nervous system. Hum Mol Genet 12(2):R195–R200

    Article  CAS  PubMed  Google Scholar 

  • Morais SB, Figueiredo BC, Assis NRG et al (2018) Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation. PLoS Pathog 14(2):e1006870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morjen M, Kallech-Ziri O, Bazaa A et al (2013) PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol 32(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Mackessy SP (2014) Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom. Toxicon 89:55–66

    Article  CAS  PubMed  Google Scholar 

  • Oliva ML, Ferreira Rda S, Ferreira JG, de Paula CA et al (2011) Structural and functional properties of kunitz proteinase inhibitors from leguminosae: a mini review. Curr Protein Pept Sci 12(5):348–357

    Article  CAS  PubMed  Google Scholar 

  • Peigneur S, Billen B, Derua R, Waelkens E et al (2011) A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem Pharmacol 82:81–90

    Article  CAS  PubMed  Google Scholar 

  • Pendlebury D, Wang R, Henin RD et al (2014) Sequence and conformational specificity in substrate recognition: several human Kunitz protease inhibitor domains are specific substrates of mesotrypsin. J Biol Chem 289(47):32783–32797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugia MJ, Valdes R, Jortani SA (2007) Bikunin (urinary trypsin inhibitor): structure, biological relevance, and measurement. Adv In Clin Chem 44:223–245

    Article  CAS  Google Scholar 

  • Ranasinghe S, McManus DP (2013) Structure and function of invertebrate Kunitz serine protease inhibitors. Dev Com Immuno 39:219–227

    Article  CAS  Google Scholar 

  • Ranasinghe SL, Fischer K, Gobert GN et al (2015a) Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasites Vectors 8:408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranasinghe SL, Fischer K, Gobert GN, McManus DP (2015b) A novel coagulation inhibitor from Schistosoma japonicum. Parasitology 142(14):1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004a) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004b) MEROPS: the peptidase database. Nucleic acids Res 32:160–164

    Article  CAS  Google Scholar 

  • Robertson B, Owen D, Stow J, Butler C, Newland C (1996) Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes. FEBS Lett 383:26–30

    Article  CAS  PubMed  Google Scholar 

  • Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S (2009) An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 8:1891–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors—current and potential applications. Appl Microbiol Biotechnol 93:1351–1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salier JP (1990) Inter-α-trypsin inhibitor: emergence of a family within the Kunitz-type protease inhibitor superfamily. Trends in Biochem Sci 15:435–439

    Article  CAS  Google Scholar 

  • Salier JP, Rouet P, Raguenez G, Daveau M (1996) The inter-α-inhibitor family: from structure to regulation. Biochem J 315:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz A, Cabezas-Cruz A, Kopecky J, Valdes JJ (2014) Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. BMC Evol Biol 14:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheffield WP, Eltringham-Smith LJ, Bhakta V (2018) Fusion to human serum albumin extends the circulatory half-life and duration of antithrombotic action of the kunitz protease inhibitor domain of protease nexin 2. Cell Physiol Biochem 45(2):772–782

    Article  CAS  PubMed  Google Scholar 

  • Shigetomi H, Onogi A, Kajiwara H et al (2010) Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm Res 59(9):679–687

    Article  CAS  PubMed  Google Scholar 

  • Simeon R, Chen Z (2018) Invitro-engineered non-antibody protein therapeutics. Protein Cell 9(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Tikhonova IG, Jewhurst HL, Drysdale OC et al (2016) Unexpected activity of a novel Kunitz-type inhibitor: inhibition of cysteine proteases but not serine proteases. J Biol Chem 291(37):19220–19234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strydom DJ (1973) Protease inhibitors as snake venom toxins. Nat New Biol 243:88–89

    Article  CAS  PubMed  Google Scholar 

  • Strydom DJ (1977) Snake venom toxins. The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor, from Dendroaspis polylepis polylepis (black mamba) venom. Biochim Biophys Acta 491:361–369

    Article  CAS  PubMed  Google Scholar 

  • Thakur R, Mukherjee AK (2017) Pathophysiological significance and therapeutic applications of snake venom protease inhibitors. Toxicon 131:37–47

    Article  CAS  PubMed  Google Scholar 

  • Vincent JP, Lazdunski M (1973) The interaction between alpha-chymotrypsin and pancreatic trypsin inhibitor (Kunitz inhibitor). Kinetic and thermodynamic properties. Eur J Biochem 38:365–372

    Article  CAS  PubMed  Google Scholar 

  • Walsh JB, Stephan W (2001) Multigene families: evolution. Encycl Life Sci 1–6:673

    Google Scholar 

  • Wan H, Lee KS, Kim BY, Zou FM, Yoon HJ et al (2013a) A spider-derived kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS ONE 8(1):e53343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Lee KS, Kim BY, Zou FM et al (2013b) A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS ONE 8(1):e53343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FC, Bell N, Reid P, Smith LA et al (1999) Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2a subunit. Eur J Biochem 263:222–229

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Baird LG (2003) DX-88 and HAE: a developmental perspective. Transfus Apher Sci 29(3):255–258

    Article  PubMed  Google Scholar 

  • Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic tragets. Nat Rev Drug Discov 8(12):982–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan CH, He QY, Peng K, Diao JB, Tang X et al (2008) Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3:e3414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao R, Dai H, Qiu S, Li T, He Y et al (2011) SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom. PLoS ONE 6:27548

    Article  CAS  Google Scholar 

  • Zhuo L, Hascall VC, Kimata K (2004) Inter-α-trypsin inhibitor, a covalent protein-glycosaminoglycan-protein complex. J Biol Chem 279(37):38079–38082

    Article  CAS  PubMed  Google Scholar 

  • Župunski V, Kordiš D (2016) Strong and widespread action of site-specific positive selection in the snake venom Kunitz/BPTI protein family. Sci Rep 6:37054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zupunski V, Kordis D, Gubensek F (2003) Adaptive evolution in the snake venom Kunitz/BPTI protein family. FEBS Lett 547:131–136

    Article  CAS  PubMed  Google Scholar 

  • Zweckstetter M, Czisch M, Mayer U et al (1996) Structure and multiple conformations of the Kunitz-type domain from human type VI collagen α3(VI) chain in solution. Structure 4:195–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MM is a recipient of DST-INSPIRE Faculty fellowship award from Department of Science & Technology (DST) and Indo-Australian Career Boosting Gold Fellowship (IACBGF) from Department of Biotechnology (DBT), Government of India, New Delhi. Support from Shiv Nadar University and mentorship of Dr. Shailja Singh is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manasi Mishra.

Additional information

Handling editor: Erich Bornberg-Bauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 88, 537–548 (2020). https://doi.org/10.1007/s00239-020-09959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09959-9

Keywords

Navigation