Log in

Evolutionary History of Eukaryotic α-Glucosidases from the α-Amylase Family

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Although some α-glucosidases from the α-amylase family (glycoside hydrolase family GH13) have been studied extensively, their exact number, organization on the chromosome, and orthology/paralogy relationship were unknown. This was true even for important disease vectors where gut α-glucosidase is known to be receptor for the Bin toxin used to control the population of some mosquito species. In some cases orthologs from related species were studied intensively, while potentially important paralogs were omitted. We have, therefore, used a bioinformatics approach to identify all family GH13 α-glucosidases from the selected species from Metazoa (including three mosquito species: Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus) as well as from Fungi in an effort to characterize their arrangement on the chromosome and evolutionary relationships among orthologs and among paralogs. We also searched for pseudogenes and genes coding for enzymatically inactive proteins with a possible new function. We have found GH13 α-glucosidases mostly in Arthropoda and Fungi where they form gene families, as a result of multiple lineage-specific gene duplications. In mosquito species we have identified 14 α-glucosidase (Aglu) genes of which only five have been biochemically characterized so far, two are putative pseudogenes and the rest remains uncharacterized. We also revealed quite a complex evolutionary history of the eukaryotic α-glucosidases probably involving multiple losses of genes or horizontal gene transfer from bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CSR:

Conserved sequence region

GH:

Glycoside hydrolase

GPI:

Glycosylphosphatidylinositol

ML:

Maximum likelihood

MP:

Maximum parsimony

MY:

Million years

MYA:

Million years ago

NJ:

Neighbor-joining

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Alam MS, Nakashima S, Deyashiki Y, Banno Y, Hara A, Nozawa Y (1996) Molecular cloning of a gene encoding acid alpha-glucosidase from Tetrahymena pyriformis. J Eukaryot Microbiol 43:295–303

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ashford DA, Smith WA, Douglas AE (2000) Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 46:335–341

    Article  PubMed  CAS  Google Scholar 

  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–234

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40(Database issue):D48–D53

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) Genewise and genomewise. Genome Res 14:988–995

    Article  PubMed  CAS  Google Scholar 

  • Broer S, Wagner CA (2002) Structure-function relationships of heterodimeric amino acid transporters. Cell Biophys 36:155–168

    Article  CAS  Google Scholar 

  • Brosius J (1999) RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238:115–134

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Charron MJ, Dubin RA, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899

    PubMed  CAS  Google Scholar 

  • Chillaron J, Roca R, Valencia A, Zorzano A, Palacin M (2001) Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 281:995–1018

    Google Scholar 

  • Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD, Goldenthal MJ, Buchferer B, Marmur J (1984) Mutational analysis of the MAL1 locus of Saccharomyces: identification and functional characterization of three genes. Mol Gen Genet 196:208–216

    Article  PubMed  CAS  Google Scholar 

  • Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR (2003) Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 49:11–24

    Article  PubMed  CAS  Google Scholar 

  • Da Lage JL, Renard E, Chartois F, Lemeunier F, Cariou ML (1998) Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci USA 95:6848–6853

    Article  PubMed  Google Scholar 

  • Da Lage JL, Maczkowiak F, Cariou ML (2000) Molecular characterization and evolution of the amylase multigene family of Drosophila ananassae. J Mol Evol 51:391–403

    PubMed  Google Scholar 

  • Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci 61:97–109

    Article  PubMed  CAS  Google Scholar 

  • Da Lage JL, Danchin EG, Casane D (2007) Where do animal α-amylases come from? An interkingdom trip. FEBS Lett 581:3927–3935

    Article  PubMed  CAS  Google Scholar 

  • Darboux I, Nielsen-LeRoux C, Charles JF, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990

    Article  PubMed  CAS  Google Scholar 

  • Dennis JA, Moran C, Healy PJ (2000) The bovine alpha-glucosidase gene: coding region, genomic structure, and mutations that cause bovine generalized glycogenosis. Mammalian Genome 11:206–212

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, El Kordy E (1997) Carbohydrate digestion in sandflies: α-glucosidase activity in the midgut of Phlebotomus langeroni. Comp Biochem Physiol B Biochem Mol Biol 116:35–40

    Article  PubMed  CAS  Google Scholar 

  • Downing N (1978) Measurements of the osmotic concentrations of stylet sap, haemolymph and honeydew from an aphid under osmotic stress. J Exp Biol 77:247–250

    Google Scholar 

  • Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs

    Google Scholar 

  • Eliason DA (1963) Feeding adult mosquitoes in solid sugars. Nature 200:289

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferreira LM, Romão TP, de Melo-Neto OP, Silva-Filha MH (2010) The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin. Insect Biochem Mol Biol 40:604–610

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Wright JP, Mittler TE (1984) Osmoregulation by the aphid Myzus persicae: a physiological role for honeydew oligosaccharides. J Insect Physiol 30:387–393

    Article  CAS  Google Scholar 

  • Foley DH, Bryan JH, Yeates D, Saul A (1998) Evolution and systematics of Anopheles: insights from a molecular phylogeny of Australasian mosquitoes. Mol Phylogenet Evol 9:262–275

    Article  PubMed  CAS  Google Scholar 

  • Gabrisko M, Janecek S (2009) Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 α-amylase family. FEBS J 276:7265–7278

    Article  PubMed  CAS  Google Scholar 

  • Gabrisko M, Janecek S (2011) Characterization of maltase clusters in the genus Drosophila. J Mol Evol 72:104–118

    Article  PubMed  CAS  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19:748–761

    Article  PubMed  CAS  Google Scholar 

  • Geber A, Williamson PR, Rex JH, Sweeney EC, Bennett JE (1992) Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J Bacteriol 174:6992–6996

    PubMed  CAS  Google Scholar 

  • Gomez SM, Eiglmeier K, Segurens B, Dehoux P, Couloux A, Scarpelli C, Wincker P, Weissenbach J, Brey PT, Roth CW (2005) Pilot Anopheles gambiae full-length cDNA study: sequencing and initial characterization of 35,575 clones. Genome Biol 6:R39

    Article  PubMed  Google Scholar 

  • Graveley BR, Brooks A, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general α-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Hehre EJ, Hamilton DM, Carlson AS (1949) Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell-free, bacterial enzyme system (amylosucrase). J Biol Chem 177:267–279

    PubMed  CAS  Google Scholar 

  • Henikoff S, Wallace JC (1988) Detection of protein similarities using nucleotide sequence databases. Nucleic Acids Res 16:6191–6204

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Pfeffer-Hennig S, Dauter Z, Wilson KS, Schlesier B, Nong VH (1995) Crystal structure of narbonin at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 51:177–189

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Jansonius JN, Terwisscha van Scheltinga AC, Dijkstra BW, Schlesier B (1996) Crystal structure of concanavalin B at 1.65 Å resolution. An “inactivated” chitinase from seeds of Canavalia ensiformis. J Mol Biol 254:237–246

    Article  Google Scholar 

  • Hermans MM, Kroos MA, van Beeumen J, Oostra BA, Reuser AJ (1991) Human lysosomal alpha-glucosidase. Characterization of the catalytic site. J Biol Chem 266:13507–13512

    PubMed  CAS  Google Scholar 

  • Hoefsloot LH, Hoogeveen-Westerveld M, Reuser AJ, Oostra BA (1991) Characterization of the human lysosomal alpha-glucosidase gene. Biochem J 272:493–497

    Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Huber RE, Thompson DJ (1973) Studies on a honey bee sucrase exhibiting unusual kinetics and transglucolytic activity. Biochemistry 12:4011–4020

    Article  PubMed  CAS  Google Scholar 

  • James AA, Blackmer K, Racioppi JV (1989) A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 75:73–83

    Article  PubMed  CAS  Google Scholar 

  • Janecek S (1995) Close evolutionary relatedness among functionally distantly related members of the (α/β)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett 377:6–8

    Article  PubMed  CAS  Google Scholar 

  • Janecek S (2002) How many conserved sequence regions are there in the α-amylase family? Biologia 57(Suppl. 11):29–41

    CAS  Google Scholar 

  • Janecek S, Blesak K (2011) Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. Protein J 30:429–435

    Article  PubMed  CAS  Google Scholar 

  • Janecek S, Svensson B, Henrissat B (1997) Domain evolution in the α-amylase family. J Mol Evol 45:322–331

    Article  PubMed  CAS  Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (2007) A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett 581:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Jeffs PS, Holmes EC, Ashburner M (1994) The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol 11:287–304

    PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Jones DC, Mehlert A, Güther ML, Ferguson MA (2005) Deletion of the glucosidase II gene in Trypanosoma brucei reveals novel N-glycosylation mechanisms in the biosynthesis of variant surface glycoprotein. J Biol Chem 280:35929–35942

    Article  PubMed  CAS  Google Scholar 

  • Juge N, Payan F, Williamson G (2004) XIP-I, a xylanase inhibitor protein from wheat: a novel protein function. Biochim Biophys Acta 1696:203–211

    Article  PubMed  CAS  Google Scholar 

  • Kalume DE, Okulate M, Zhong J, Reddy R, Suresh S, Deshpande N, Kumar N, Pandey A (2005) A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Proteomics 5:3765–3777

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Takewaki S, Matsui H, Kubota M, Chiba S (1990) Allosteric properties, substrate specificity, and subsite affinities of honeybee α-glucosidase I. J Biochem 107:762–768

    PubMed  CAS  Google Scholar 

  • Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39:417–423

    Article  PubMed  CAS  Google Scholar 

  • Kubota M, Tsuji M, Nishimoto M et al (2004) Localization of α-glucosidases I, II and III in organs of European honeybee, Apis mellifera L., and origin of α-glucosidase in honey. Biosci Biotechnol Biochem 68:2346–2352

    Article  PubMed  CAS  Google Scholar 

  • Kunita R, Nakabayashi O, Wu JY, Hagiwara Y, Mizutani M, Pennybacker M, Chen YT, Kikuchi T (1997) Molecular cloning of acid alpha-glucosidase cDNA of Japanese quail (Coturnix coturnix japonica) and the lack of its mRNA in acid maltase deficient quails. Biochim Biophys Acta 1362:269–278

    Article  PubMed  CAS  Google Scholar 

  • Kuriki T, Imanaka T (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87:557–565

    Article  PubMed  CAS  Google Scholar 

  • Lawson D, Arensburger P, Atkinson P et al (2009) VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37:D583–D587

    Article  PubMed  CAS  Google Scholar 

  • Lodge JA, Maier T, Liebl W, Hoffmann V, Sträter N (2003) Crystal structure of Thermotoga maritima α-glucosidase AglA defines a new clan of NAD+-dependent glycosidases. J Biol Chem 278:19151–19158

    Article  PubMed  CAS  Google Scholar 

  • Long M, Wang W, Zhang J (1999) Origin of new genes and source for N-terminal domain of the chimerical gene, **g-wei, in Drosophila. Gene 238:135–141

    Article  PubMed  CAS  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    Article  PubMed  CAS  Google Scholar 

  • Maczkowiak F, Da Lage JL (2006) Origin and evolution of the Amyrel gene in the α-amylase multigene family of Diptera. Genetica 128:145–158

    Article  PubMed  CAS  Google Scholar 

  • Marinotti O, James AA (1990) An α-glucosidase in the salivary glands of the vector mosquito, Aedes aegypti. Insect Biochem 20:619–623

    Article  CAS  Google Scholar 

  • Marinotti O, de Brito M, Moreira CK (1996) Apyrase and α-glucosidase in the salivary glands of Aedes albopictus. Comp Biochem Physiol B Biochem Mol Biol 113:675–679

    Article  PubMed  CAS  Google Scholar 

  • Martiniuk F, Ellenbogen A, Hirschhorn R (1985) Identity of neutral alpha-glucosidase AB and the glycoprotein processing enzyme glucosidase II. Biochemical and genetic studies. J Biol Chem 260:1238–1242

    PubMed  CAS  Google Scholar 

  • Matsui H, Iwanami S, Ito H, Mori H, Honma M, Chiba S (1997) Cloning and sequencing of a cDNA encoding alpha-glucosidase from sugar beet. Biosci Biotechnol Biochem 61:875–880

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95:697–702

    PubMed  CAS  Google Scholar 

  • McQuilton P, St Pierre SE, Thurmond J, FlyBase Consortium (2012) FlyBase 101—the basics of navigating FlyBase. Nucleic Acids Res 40(Database issue):D706–D714

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG (2011) Hymenoptera Genome Database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 39(Database issue):D658–D662

    Article  PubMed  CAS  Google Scholar 

  • Mury FB, da Silva JR, Ferreira LS et al (2009) α-Glucosidase promotes hemozoin formation in a blood-sucking bug: an evolutionary history. PLoS One 4:e6966

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto M, Kubota M, Tsuji M, Mori H, Kimura A, Matsui H, Chiba S (2001) Purification and substrate specificity of honeybee, Apis mellifera L., α-glucosidase III. Biosci Biotechnol Biochem 65:1610–1616

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto M, Mori H, Moteki T et al (2007) Molecular cloning of cDNAs and genes for three α-glucosidases from European honeybees, Apis mellifera L., and heterologous production of recombinant enzymes in Pichia pastoris. Biosci Biotechnol Biochem 71:1703–1716

    Article  PubMed  CAS  Google Scholar 

  • Novak S, Zechner-Krpan V, Marie V (2004) Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol Biotechnol 42:213–218

    CAS  Google Scholar 

  • Opota O, Charles JF, Warot S, Pauron D, Darboux I (2008) Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae. Comp Biochem Physiol B Biochem Mol Biol 149:419–427

    Article  PubMed  CAS  Google Scholar 

  • Oslancova A, Janecek S (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59:1945–1959

    Article  PubMed  CAS  Google Scholar 

  • Payan F, Flatman R, Porciero S, Williamson G, Juge N, Roussel A (2003) Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson). Biochem J 372:399–405

    Article  PubMed  CAS  Google Scholar 

  • Payan F, Leone P, Porciero S et al (2004) The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. J. Biol. Chem 279:36029–36037

    Article  PubMed  CAS  Google Scholar 

  • Price DR, Karley AJ, Ashford DA, Isaacs HV, Pownall ME, Wilkinson HS, Gatehouse JA, Douglas AE (2007) Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochem Mol Biol 37:307–317

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JD, Croghan PC, Dixon AFG (1997) Dietary sucrose and oligosaccharide synthesis in relation to osmoregulation in the pea aphid, Acyrthosiphon pisum. Physiol Entomol 22:373–379

    Article  CAS  Google Scholar 

  • Rigden DJ (2002) Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13. FEBS Lett 523:17–22

    Article  PubMed  CAS  Google Scholar 

  • Romão TP, de Melo Chalegre KD, Key S, Ayres CF, Fontes de Oliveira CM, de Melo-Neto OP, Silva-Filha MH (2006) A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its α-glucosidase receptor in Culex quinquefasciatus. FEBS J 273:1556–1568

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res 16:1334–1338

    Article  PubMed  CAS  Google Scholar 

  • Sikora J, Urinovská J, Majer F, Poupetová H, Hlavatá J, Kostrouchová M, Ledvinová J, Hrebícek M (2010) Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid alpha-glucosidase in Caenorhabditis elegans. Mol Cell Biochem 341:51–63

    Article  PubMed  CAS  Google Scholar 

  • Silva-Filha MH, Nielsen-LeRoux C, Charles JF (1999) Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochem Mol Biol 29:711–721

    Article  PubMed  CAS  Google Scholar 

  • Skov LK, Mirza O, Henriksen A, De Montalk GP, Remaud-Simeon M, Sarçabal P, Willemot RM, Monsan P, Gajhede M (2001) Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. J Biol Chem 276:25273–25278

    Article  PubMed  CAS  Google Scholar 

  • Snyder M, Davidson N (1983) Two gene families clustered in a small region of the Drosophila genome. J Mol Biol 166:101–118

    Article  PubMed  CAS  Google Scholar 

  • Souza-Neto JA, Machado FP, Lima JB, Valle D, Ribolla PE (2007) Sugar digestion in mosquitoes: identification and characterization of three midgut α-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Comp Biochem Physiol A Mol Integr Physiol 147:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  PubMed  CAS  Google Scholar 

  • Takewaki S, Chiba S, Kimura A, Matsui H, Koike Y (1980) Purification and properties of α-glucosidases of the honey bee Apis mellifera L. Agric Biol Chem 44:731–740

    Article  CAS  Google Scholar 

  • Takewaki S, Kimura A, Kubota M, Chiba S (1993) Substrate specificity and subsite affinities of honeybee α-glucosidase II. Biosci Biotechnol Biochem 57:1508–1513

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Teste MA, François JM, Parrou JL (2010) Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem 285:26815–26824

    Article  PubMed  CAS  Google Scholar 

  • Tibbot BK, Skadsen RW (1996) Molecular cloning and characterization of a gibberellin-inducible, putative alpha-glucosidase gene from barley. Plant Mol Biol 30:229–241

    Article  PubMed  CAS  Google Scholar 

  • Van der Kaaij RM, Janecek S, van der Maarel MJ, Dijkhuizen L (2007) Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes. Microbiology 153:4003–4015

    Article  PubMed  CAS  Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:253–272

    Article  PubMed  CAS  Google Scholar 

  • Vieira CP, Vieira J, Hartl DL (1997) The evolution of small gene clusters: evidence for an independent origin of the maltase gene cluster in Drosophila virilis and Drosophila melanogaster. Mol Biol Evol 14:985–993

    Article  PubMed  CAS  Google Scholar 

  • Viigand K, Tammus K, Alamäe T (2005) Clustering of MAL genes in Hansenula polymorpha: cloning of the maltose permease gene and expression from the divergent intergenic region between the maltose permease and maltase genes. FEMS Yeast Res 5:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Vongsangnak W, Salazar M, Hansen K, Nielsen J (2009) Genome-wide analysis of maltose utilization and regulation in aspergilli. Microbiology 155:3893–3902

    Article  PubMed  CAS  Google Scholar 

  • Walters FS, Mullin CA (1988) Sucrose-dependent increase in the oligosaccharide production and associated glycosidase activities in the potato aphid Macrosiphum euphorbiae (Thomas). Arch Insect Biochem Physiol 9:35–46

    Article  CAS  Google Scholar 

  • Wells RG, Hediger MA (1992) Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA 89:5596–5600

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TL, Ashford DA, Pritchard J, Douglas AE (1997) Honeydew sugars and osmoregulation in the pea aphid Acyrthosiphon pisum. J Exp Biol 200:2137–2143

    PubMed  CAS  Google Scholar 

  • Winge O, Roberts C (1950) Identification of the gene for maltose fermentation in Saccharomyces italicus. Nature 166:1114

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Nakayama A, Yamamoto Y, Tabata S (2004) Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae. Eur J Biochem 271:3414–3420

    Article  PubMed  CAS  Google Scholar 

  • Yuan XL, van der Kaaij RM, van den Hondel C, Punt PJ, van der Maarel M, Dijkhuizen L, Ram AFJ (2008) Aspergillus niger genome-wide analysis reveals a large number of novel α-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279:545–561

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Inomata N, Yamazaki T, Kishino H (2003) Evolutionary history and mode of the amylase multigene family in Drosophila. J Mol Evol 57:702–709

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Whang LH, Kumar V, Kafatos FC (1995) Two genes encoding midgut-specific maltase-like polypeptides from Anopheles gambiae. Exp Parasitol 81:272–283

    Article  PubMed  CAS  Google Scholar 

  • Zona R, Chang-Pi-Hin F, O’Donohue MJ, Janecek S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Stefan Janecek, my supervisor, for all his support and encouragement. This work was supported by the Grant No. 2/0148/11 from the Slovak Grant Agency VEGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gabriško.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Proteins used in the phylogenetical analysis (xlsx file) Supplementary material 1 (XLSX 45 kb)

239_2013_9545_MOESM2_ESM.pdf

Fig. S1 Phylogenetic trees of α-glucosidases and related proteins from the α-amylase family (pdf file)Supplementary material 2 (PDF 398 kb)

Fig. S2 Multiple sequence alignment of eukaryotic α-glucosidases (pdf file)Supplementary material 3 (PDF 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriško, M. Evolutionary History of Eukaryotic α-Glucosidases from the α-Amylase Family. J Mol Evol 76, 129–145 (2013). https://doi.org/10.1007/s00239-013-9545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9545-4

Keywords

Navigation