Log in

Mitochondrial Permeability Transition Induced by Different Concentrations of Zinc

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Zinc is one of the required trace elements in animals, and it serves an important role in biological systems. However, high levels of zinc are poisonous to organisms. So far, there exist conflicting reports about zinc ions-induced mitochondrial permeability transition (MPT). We analyzed the effects of Zn2+ on MPT by monitoring mitochondrial swelling with the ultraviolet–visible light absorption spectrum, characterizing the fluidity of the membrane with fluorescence anisotropy, detecting the transmembrane potential (Δψ) with fluorescence intensity, and observing mitochondrial ultrastructure with transmission electron microscopy. Data reveal that low concentrations of zinc ions can trigger MPT while high levels of zinc ions cannot, which implies that zinc ions’ toxicity cannot be the result of a single simple mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva EA (2010) Mitochondrial respiratory chain inhibitors modulate the metal-induced inner mitochondrial membrane permeabilization. Acta Biochim Pol 57:435–441

    PubMed  CAS  Google Scholar 

  • Belyaeva EA, Korotkov SM, Saris NE (2011) In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: a comparison of copper and mercury with cadmium. J Trace Elem Med Biol 25:S63–S73

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    Article  PubMed  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabó I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939

    PubMed  CAS  Google Scholar 

  • Biasutto L, Sassi N, Mattarei A, Marotta E, Cattelan P, Toninello A, Garbisa S, Zoratti M, Paradisi C (2010) Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochim Biophys Acta 1797:189–196

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Talantova MV, Lee WD, Schölzke MN, Harrop A, Mathews E, Götz T, Han J, Ellisman MH, Perkins GA, Lipton SA (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu K-FR, Blass JP, Cooper AJL (2000) Zn2+ inhibits α-ketoglutarate-stimulated mitochondrial respiration and the isolated α-ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447

    Article  PubMed  CAS  Google Scholar 

  • Chanoit G, Lee S, ** J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3β. Am J Physiol Heart Circ Physiol 295:H1227–H1233

    Article  PubMed  CAS  Google Scholar 

  • Devinney MJ, Malaiyandi LM, Vergun O, DeFranco DB, Hastings TG, Dineley KE (2009) A comparison of Zn2+- and Ca2+-triggered depolarization of liver mitochondria reveals no evidence of Zn2+-induced permeability transition. Cell Calcium 45:447–455

    Article  PubMed  CAS  Google Scholar 

  • Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5:55–65

    Article  PubMed  CAS  Google Scholar 

  • Fernandes MAS, Custódio JBA, Santos MS, Moreno AJM, Vicente JAF (2006) Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 6:176–185

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang L, Yu BP, Escames G (1998) Melatonin enhances tamoxifen’s ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membr Biol 162:59–65

    Article  PubMed  CAS  Google Scholar 

  • Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM (2007) Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem 282:24373–24380

    Article  PubMed  CAS  Google Scholar 

  • Gerencser AA, Doczi J, Töröcsik B, Bossy-Wetzel E, Adam-Vizi V (2008) Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys J 95:2583–2598

    Article  PubMed  CAS  Google Scholar 

  • He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn2+ induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276:47524–47529

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  PubMed  CAS  Google Scholar 

  • Link TA, Jagow GV (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc 1 complex by blocking a protonatable group. J Biol Chem 270:25001–25006

    Article  PubMed  CAS  Google Scholar 

  • Lorusso M, Cocco T, Sardanelli AM, Minuto M, Bonomi F, Papa S (1991) Interaction of Zn2+ with the bovine-heart mitochondrial bc 1 complex. Eur J Biochem 197:555–561

    Article  PubMed  CAS  Google Scholar 

  • Manev H, Kharlamov E, Uz T, Mason RP, Cagnoli CM (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp Neurol 146:171–178

    Article  PubMed  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, Bari LD (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  PubMed  CAS  Google Scholar 

  • Petronilli V, Šileikytė J, Zulian A, Dabbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress. Unmasking pore-regulating external thiols. BBA-Bioenergetics 1787:897–904

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Gobbo S, Moreno G, Salet C (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry 38:9295–9300

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Beghetto C, Gobbo S, Tognon G, Moretto V, Crisma M (2003) Structural modifications of the permeability transition pore complex in resealed mitochondria induced by matrix-entrapped disaccharides. Arch Biochem Biophys 410:155–160

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37:1858–1868

    Article  PubMed  CAS  Google Scholar 

  • Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM (2003) Chenodeoxycholate induction of mitochondrial permeability transition pore is associated with increased membrane fluidity and cytochrome c release: protective role of carvedilol. Mitochondrion 2:305–311

    Article  PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainite channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419

    Article  PubMed  CAS  Google Scholar 

  • Vicente JAF, Santos MS, Vercesi AE, Madeira VMC (1998) Comparative effects of the herbicide dinitro-o-cresol on mitochondrial bioenergetics. Pestic Sci 54:43–51

    Article  CAS  Google Scholar 

  • Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388

    Article  PubMed  CAS  Google Scholar 

  • Wudarczyk J, Dębska G, Lenartowicz E (1999) Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys 363:1–8

    Article  PubMed  CAS  Google Scholar 

  • **a T, Jiang C, Li L, Wu C, Chen Q, Liu SS (2002) A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro. FEBS Lett 510:62–66

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membr Biol 241:39–49

    Article  PubMed  CAS  Google Scholar 

  • Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  • Zoratti M, Szabò I, Marchi UD (2005) Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 1706:40–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Chinese 973 program (grant 2011CB933600), and National Natural Science Foundation of China (grant 21077081, 21173026, and 20921062), and Fundamental Research Funds for Central Universities (1103005, 1101007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XR., Li, JH., Zhang, Y. et al. Mitochondrial Permeability Transition Induced by Different Concentrations of Zinc. J Membrane Biol 244, 105–112 (2011). https://doi.org/10.1007/s00232-011-9403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9403-5

Keywords

Navigation